
Cilindro pneumático

Série CJ2

ø6, ø10, ø16

Cilindro de baixa velocidade Serie CJ2X Consulte Best Pneumatics № 3.

CJ1

CJP

CJ2

CM2 -Z

CM2

CM3

CG1

GUI

CG3

MB

MB1

CA2

CS1

D-□ -X□

Technical data

Combinações de produtos padrão e Especificações

Série CJ2

	Pa		

●: Padrão⊚ : Especificaç	ões produzidas sob encomenda	Serie	CJ2 (Padrão)				(Não rotativo)			
: Produto espec : Não disponi	cial (entre em contato com a SMC para obter detalhes.)	Ação/Tipo	<u> </u>	a ação		es ação	Dupla ação	Simple	es ação	
. read disponi	· · ·	1.0	Haste simples	Haste passante	Haste simples (retorno por mola)	Haste simples (avanço por mola)	Haste simples	Haste simples (retorno por mola)	Haste simples (avanço por mola)	
Símbolo	Especificação	Diâmetro aplicável		ø6 :	a 16			ø10, ø16		
Padrão	Padrão		•	•	•	•	•	•	•	
D	Com anel magnético	ø6 a ø16	•	•	•	•	•	•	•	
CJ2□-□A	Amortecimento pneumático	ø10, ø16	•	•	_	_	_	_	_	
10-, 11-	Série limpa (2)	ø6 a ø16	•	• (1)	0	0	_	_	_	
25-	Sem cobre (Cu) (10)	ø10, ø16	•	0	0	0	0	0	0	
25A	Sem cobre (Cu) e zinco (Zn) (10)	910, 910	•	0	0	0	0	0	0	
20-	Sem cobre (9) e Flúor (3)	ø6 a ø16	•	•	•	•	•	•	•	
XB6	Cilindro resistente ao calor (-10 a 150 °C) (4)(5)		0	0	0	0	0	0	0	
ХВ7	Cilindro resistente ao frio (4)(5)	ø6 a ø16	0	0	0	0	0	0	0	
ХВ9	Cilindro de baixa velocidade (10 a 50 mm/s) (5)	90 8 910	0	_	_	_	_	_	_	
XB13	Cilindro de baixa velocidade (5 a 50 mm/s) (5)		0	_	_	_	_	_	_	
хсз	Posição especial da porta (3)(5)		0	0	_	_	0	_	_	
XC8	Cilindro de curso ajustável/Tipo de retração ajustável (5)		0	_	0	0	0	0	0	
хс9	Cilindro de curso ajustável/Tipo de extensão ajustável (5)	ø10, ø16	0	_	0	_	0	0	_	
XC10	Cilindro de curso duplo/Tipo de haste passante (5)		0	_	0	0	0	0	0	
XC11	Cilindro de curso duplo/Tipo de haste simples (5)		0	_	_	_	0	_	_	
XC22	Vedação de borracha de flúor (5)	ø6 a ø16	0	0	0	0	0	0	0	
XC51	Com bico de mangueira	20 4 9 10	0	0	0	0	0	0	0	
X773	Espaçamento curto de montagem	ø6	_	_	0	_	_	_	_	

SMC

Nota 1) ø10 e ø16 somente. Nota 2) Modelo de montagem: Não compatível com o modelo de fixação oscilante. Um sensor está disponível apenas no modelo de montagem em abraçadeira.

Nota 3) Um sensor está disponível apenas no modelo de montagem em abraçadeira. Nota 4) Não compatível com cilindros com um sensor.

Nota 5) Não compatível com cilindros com amortecimento pneumático.

Nota 6) Disponível apenas para travamento na extremidade traseira. Nota 7) Consulte Best Pneumatics Nº 3 para cilindros de baixa velocidade.

Nota 8) Disponível apenas para travamento no lado dianteiro.

Nota 9) Não é permitido o uso de cobre para a peça externa exposta. Nota 10) Para obter detalhes, consulte o site da SMC.

produzidas sob encomenda

Série CJ2

Dupla Haste	ação		()	ntagem di	reta)	(Montager	n direta, Nã	o rotativa)	(Com trava)	CJ2X Cilindro de baixa velocidade (7)
Haste	-	Dupla ação	Dupla ação	Simple		Dupla ação		s ação	Dupla ação	Dupla ação
simples	Haste passante	Haste simples	Haste simples	Haste simples (retorno por mola)	Haste simples (avanço por mola)	Haste simples	Haste simples (retorno por mola)	Haste simples (avanço por mola)	Haste simples	Haste simples
				ø10,	ø16				ø16	ø10, ø16
•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•
_	_	_	0	_	_	_	_	_	_	_
-	_	_	•	0	0	_	_	_	O ⁽⁶⁾	_
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
•	•	_	•	•	•	•	•	•	0	_
0	0	_	0	0	0	0	0	0	0	_
0	0	_	0	0	0	0	0	0	_	_
_	_	_	_	_	_	_	_	_	0	_
-	_	_	_	_	_	_	_	_	_	_
-	_	0	0	_	_	0	_	_	0	0
0	_	_	0	0	0	0	0	0	_	_
_	_	0	0	0	_	0	0	_	○ ⁽⁸⁾	_
0	_	0	0	0	0	0	0	0	0	_
_	_	_	0	_	_	0	_	_	O (8)	_
0	0	_	0	0	0	0	0	0	0	_
0	0	0	0	0	0	0	0	0	_	_
_	_	_	_	_	_	_	_	_	_	_
	•		 • • - - - 0 0<			 • • • • • • • • • • • • • • • • • • •	 • • • • • • • • • • • • • • • • • • •	 • • • • • • • • • • • • • • • • • • •		 • • • • • • • • • • • • • • • • • • •

CJ1 CJP

CJ2 -Z

CJ2

CM2

CM3

CG1

CG3

MB -Z

MB MB1

CA2

CA2

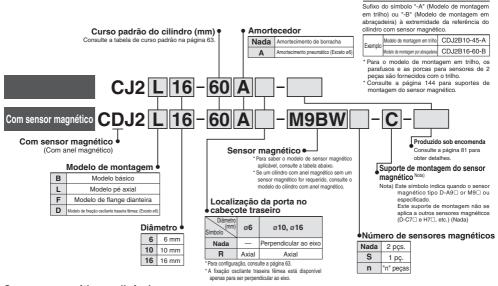
CS1

D-□ -X□

Technical data

Cilindro de ar: Tipo padrão Dupla ação, Haste simples

Série CJ2


ø6, ø10, ø16

Os produtos de dupla ação do tipo padrão, haste simples ø10 e ø16 Série CJ2 foram remodelados.

Modelo do cilindro com anel magnético

Como pedir

Para obter detalhes, consulte a página 41.

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

Carga aplicávi Circulto de CI Circulto de CI
Circulo de Cl Circulo de Cl Circulo de Cl Circulo de Cl
Circuito de CI Circui
Circuito de CI Circui
Circuito de CI Circui
de C
de C
de C
de C
Circuito de CI
Circuito de CI
_
Circuito de CI
Circuito de CI
_
Circuito de CI Circui
de C
Circuito de Cl
Ci

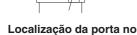
- *** Sensores magnéticos do tipo à prova d'água podem ser montados nos modelos acima, mas nesse caso, a SMC não garante a resistência à água
- Consulte a SMC sobre os tipos resistentes à água com as referências acima.

 * Símbolos de comprimento do cabo: 0,5 m....... Nada (Exemplo) M9NW * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes * Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627.

** "D-A79W" não pode ser montado no cilindro de diâmetro ø 10 com amortecimento pneumático

- (Exemplo) M9NWM 1 m----- M 3 m..... (Exemplo) M9NWI
 - 5 m-----(Exemplo) M9NWZ N (Exemplo) H7CN Nenhum....
- * Sensores de estado sólido marcados com "O" são produzidos após o recebimento do pedido.
- \$\text{\$\}\$}}}\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tex{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$

Cilindro de ar: Tipo padrão Dupla ação, Haste simples


Série CJ2

Símbolo

Dupla ação, haste simples, amortecedor de borracha

cabecote traseiro

É perpendicular ao eixo do cilindro ou em linha com o eixo do cilindro para o modelo básico. (e6 está disponível apenas como o modelo em linha.)

Especificações

Diâmetro (mm	6	10	16			
Ação	Dupla ação, Haste simples					
Fluido			Ar			
Pressão de teste			1 MPa			
Pressão máxima de trabal	ho		0,7 MPa			
Pressão mínima de trabalho	Amortecimento de borracha	0,12 MPa	0,06	MPa		
Fressao minima de trabamo	Amortecimento pneumático	_	— 0,1 MPa			
Temperatura ambiente e d	o fluido	Sem sensor magnético: -10°C a 70°C, Com sensor magnético: -10°C a 60°C *				
Amortecedor		Amortecedor de borracha/Amortecimento pneumático				
Lubrificação		Não requer (dispensa lubrificação)				
Tolerância de compriment	o do curso	+1,0 0				
Velocidade do pistão	Amortecimento de borracha	50 a 750 mm/s				
velocidade do pistao	Amortecimento pneumático	50 a 1000 mm/s				
	Amortecimento de borracha	0,012J	0,035J	0,090J		
Energia cinética admissível	Amortecimento pneumático (Comprimento eficaz do amortecedor)	_	0,07J (9,4 mm)	0,18J (9,4 mm)		

^{*} Sem congelamento

Curso padrão

	(
Diâmetro	Curso padrão
6	15, 30, 45, 60
10	15, 30, 45, 60, 75, 100, 125, 150
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

CJ1

CJP

CJ2

CM2

CM3

CG1

MB -Z

MB1 CA2

CA2

CS1

Especificações produzidas sob encomenda (Para obter detalhes, consulte as páginas 1675 a 1818).

Símbolo	Especificações					
-XA□	Alteração do formato da extremidade da haste					
-XB6	Clindro resistente ao calor (150 °C) «Não disponível com o sensor e com o amortecimento pneumático					
-XB7	Cilindro resistente ao frío «Não disponível com o sensor e com o amortecimento preumát					
-XB9	Clindro de baixa velocidade (10 a 50 mm/s) * Não disponível com o amortecimento preumático					
-XB13	Clindro de baixa velocidade (5 a 50 mm/s) * Não disponível com o amortecimento preumático					
-XC3	Localização especial da porta + Não disponível com o amortecimento preumático					
-XC8	Clindro de curso ajustável/tipo de extensão ajustável					
-XC9	Clindro de curso ajustável/Retração ajustável					
-XC10	Clindro de curso duplo/Tipo de haste passante					
-XC11	Clindro de curso duplo/tipo de haste simples					
-XC22	Vedações de borracha de flúor «Não disponível com o amortecimento preumático					
-XC51	Com bico de mangueira					

D-□ -X□

Technical data

Modelo de montagem e acessório/Para obter detalhes, consulte a página 71.

	g oga obparadamente.								
	Montagem	Modelo básico	Modelo pé axial	Modelo de flange dianteira	Modelo de fixação oscilante traseira fêmea *				
Equipamento padrão	Porca de montagem	•	•	•	_				
	Porca da haste	•	•	•	•				
	Pino da fixação oscilante	_	_	_	•				
Opcional	Junta articulada simples	0	0	0	0				
	Garfo *	0	0	0	0				
0	Suporte em T	_	_	_	0				

^{*} O pino e o anel retentor são enviados junto com a fixação oscilante traseira fêmea e a junta articulada dupla.

Ref. do suporte de montagem

Suporte de		Diâmetro (mm)	
montagem	6	10	16
Suporte tipo pé	CJ-L006B	CJ-L010B	CJ-L016B
Suporte do flange	CJ-F006B	CJ-F010B	CJ-F016B
Suporte em T *	_	CJ-T010B	CJ-T016B

^{*} O suporte em T é usado com fixação oscilante traseira fêmea (D).

.

Peso

	*			(5)			
	Diâmetro (mm)	6	10	16			
Peso	Peso básico *			Peso básico *		21	45
Peso adi	2	4	6,5				
de de	Modelo pé axial	8	8	20			
Peso do suporte de montagem	Modelo de flange dianteira	5	5	15			
Supr	Modelo de fixação oscilante traseira fêmea (com pino) *	-	4	10			
유인	Junta articulada simples	-	16	22			
Suporte do acessório	Garfo (com pino)	-	24	19,5			
Sup	Suporte em T	-	32	50			

- A porca de montagem e a porca da haste estão incluídas no peso básico.
- ** A porca de montagem não está fixada ao modelo de fixação oscilante traseira fêmea, portanto, o peso da porca de montagem já foi subtraído.

Cálculo: (Exemplo) CJ2L10-45

- Peso básico-----21 (ø10)
- Peso do suporte de montagem···8 (Modelo do pé axial)
 24 + 4/15 x 45 + 8 = 41 g

⚠ Precauções

Leia antes do manuseio.

Consulte o prefácio 57 para Instruções de Segurança e as páginas 3 a 12 para Precauções com o sensor magnético e o atuador.

Montagem

∧ Cuidado

- Durante a instalação, prenda o cabeçote dianteiro e aperte a porca de retenção ou o corpo do cabeçote dianteiro aplicando a força de aperto adequada. Se o cabeçote traseiro estiver preso ou apertado, a tampa pode girar levando a desvio.
- Aperte os parafusos retentores de acordo com o torque de aperto apropriado dentro da range fornecida abaixo.
 - ø6: 2,1 a 2,5 N·m, ø10: 5,9 a 6,4 N·m, ø16: 10,8 a 11,8 N·m
- 3. Para remover e instalar o anel retentor para o pino da articulação ou o pino da fixação, use pinças adequadas (ferramenta para instalar um anel elástico). Em particular, use pinças ultrapequenas para remover e instalar o anel retentor no cilindro de o10.
- 4. No caso do modelo de montagem em trilho do sensor magnético, não remova o trilho que está montado. Como os parafusos retentores se estendem no cilindro, isso pode levar a um vazamento de ar.
- Entre em contato com a SMC quando o curso exceder 100 mm para o modelo de montagem de pé axial.

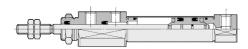
Cilindro de ar: Tipo padrão Dupla ação, Haste simples

Série CJ2

Série Limpa

10-CJ2	Modelo de montagem	Diâmetro	Curso	Localização da porta no cabeçote traseiro

Série Limpa


Cilindro de ar aplicável para o sistema que descarrega vazamento do corte da haste diretamente para a parte externa da sala limpa pela porta de alívio e fazendo um corte da haste do atuador tendo uma construção de vedação dupla.

Especificações

Ação		Dupla ação, Haste simples					
Diâmetro (mm)		6, 10, 16					
Pressão máxima de	trabalho	0,7 MPa					
Pressão mínima	ø 6	0,14 MPa					
de trabalho	ø10, ø16	0,08 MPa					
Amortecedor		Amortecedor de borracha/Amortecimento pneumático					
Curso padrão (mm)		Igual ao do tipo padrão. (Consulte a página 63.)					
Sensor magnético		Montável (modelo de montagem em abraçadeira)					
Montagem		Modelo básico, modelo de pé axial, modelo de flange dianteiro					

Construção

Para obter detalhes, consulte o catálogo separado "Série limpa pneumática".

Cilindro de baixa velocidade

CJ2X	Modelo de montagem	Diâmetro -	Curso
C	ilindro de baixa v	/elocidade	

Operação suave com pouca aderência e deslizamento em baixa velocidade.

Pode começar sem problemas com um pouco de ejeção, mesmo depois de ter sido processada por horas.

As dimensões são as mesmas do tipo de dupla ação, haste simples. Consulte Best Pneumatics nº 3 para obter detalhes.

Especificações

Especificações							
Ação		Dupla ação, Haste simples					
Diâmetro (mm)		10, 16					
Fluido		Ar					
Pressão de teste		1,05 MPa					
Pressão máxima de traba	alho	0,7 MPa					
Pressão mínima de traball	ho	0,06 MPa					
Temperatura ambiente e d	o fluido	Sem sensor magnético: -10 a 70 °C Com sensor magnético: -10 a 60 °C (Sem congelamento					
Amortecedor		Amortecedor de borracha (equipamento padrão					
Lubrificação		Não requer (dispensa lubrificação)					
Tolerância de comprimento	do curso	+1,0 0					
Velocidade do pistão		1 a 300 mm/s					
Energia cinética admissível	ø10	0,035 J					
Ellergia cilletica autilissivei	ø16	0,090 J					

CJ1

CJP

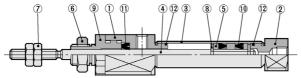
CJ2

CM2 -Z

СМЗ

CG1

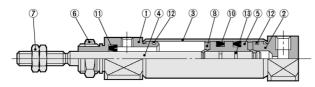
CG1 CG3


-z MB

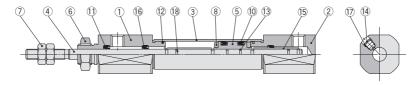
CA2 -Z CA2

> CS1 CS2

Construção (Não é possível desmontar)


CJ2□6-R

Construção do pistão quando o sensor magnético é montado.


CJ2□10, CJ2□16

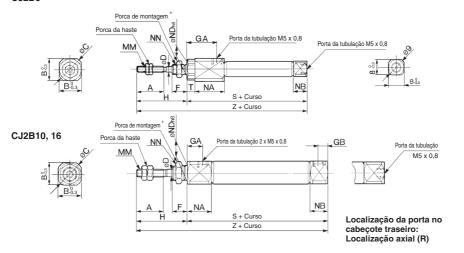
Construção do pistão quando o sensor magnético é montado.

Com amortecimento pneumático

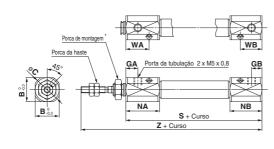
Lista de peças

	1 3		
Nº	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4	Haste do pistão	Aço inoxidável	
5	Pistão	Liga	ø6
5	Pistao	Alumínio e latão	ø10, ø16
6	Porca de montagem	Liga	Revestido com níquel
7	Porca da haste	Aço laminado	Zinco cromado
8	Amortecedor	Urethane	
9*	Retentor da vedação	Alumínio e latão	Anodizado
10	Vedação do pistão	NBR	
11	Vedação da haste	NBR	
12	Gaxeta da camisa	NBR	
13	Gaxeta do pistão	NBR	

^{*} Somente para ø6


Dedicado para tipo com amortecimento pneumático

Nº	Descrição	Material	Nota
14	Agulha de amortecimento	Aço inoxidável	
15	Anel de amortecimento	Latão	
16	Vedação de retenção	NBR	
17	Vedação da agulha	NBR	
18	Gaxeta do anel de amortecimento	NBR	


Modelo básico (B)

CJ2B Diâmetro - Curso Localização da porta no cabeçote traseiro

CJ2B6

Com amortecimento pneumático: CJ2B Diâmetro - Curso A Localização da porta no cabeçote traseiro

no cabeçote traseiro: Localização axial (R)

Porca da haste Localização da porta

			IV	nateriai:	rem
Referência	Dánehosplicável (mn	B ₂	C ₂	d	H2
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

* Para detalhes da porca de montagem, consulte a página 71.

Diâmetro (mm)	Α	В	С	D	F	GA	GB	Н	MM	NA	NB	NDh8	NN	S	Т	Z
6	15	12	14	3	8	14,5	-	28	M3 x 0,5	16	7	6 -0,018	M6 x 1,0	49	3	77
10	15	12	14	4	8	8	5	28	M4 x 0,7	12,5	9,5	8-0,022	M8 x 1,0	46	_	74
16	15	18,3	20	5	8	8	5	28	M5 x 0,8	12,5	9,5	10 -0,022	M10 x 1,0	47	-	75

SMC

Com amortecimento pneumático/dimensões diferentes da tabela abaixo são as mesmas da tabela acima. (m														
Diâmetro (mm)	В	С	GA	GB	NA	NB	WA	WB	S	Z				
10	15	17	7,5	6,5	21	20	14,5	13,5	65	93				
16	18.3	20	7,5	6,5	21	20	14.5	13.5	66	94				

CM2 СМЗ

CJ1

CJP

CJ2 CM2

CG1 -Z

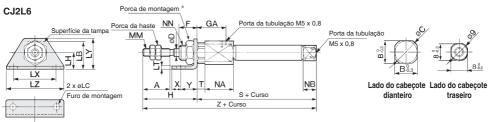
CG1 CG3

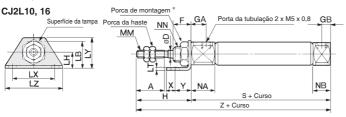
MB -Z MB

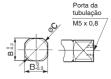
MB1 CA2

CA2

CS1

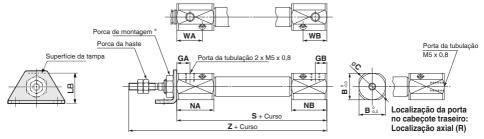

CS2


(mm)


Série CJ2

Modelo pé axial (L)

CJ2L Diâmetro - Curso Localização da porta no cabeçote traseiro



Localização da porta no cabeçote traseiro: Localização axial (R)

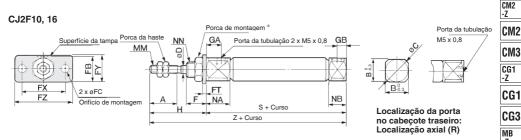
Com amortecimento pneumático: CJ2L Diâmetro - Curso A Localização da porta no cabeçote traseiro

Porca da haste d B2 H2 Material: Ferro

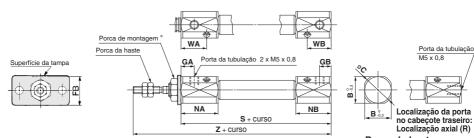
			10	iatoriai.	CITO
Referência	Diámetro aplicável (mm)	B2	C ₂	d	H ₂
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

 Para detalhes da 	norca c	le montagem	consulte a	nágina 71

Diá	imetro (mm)	Α	В	С	D	F	GA	GB	н	LB	LC	LH	LT	LX	LY	LZ	MM	NA	NB	NN	S	Т	Х	Y	Z
	6	15	12	14	3	8	14,5	-	28	15	4,5	9	1,6	24	16,5	32	M3 x 0,5	16	7	M6 x 1,0	49	3	5	7	77
	10	15	12	14	4	8	8	5	28	15	4,5	9	1,6	24	16,5	32	M4 x 0,7	12,5	9,5	M8 x 1,0	46	_	5	7	74
	16	15	18,3	20	5	8	8	5	28	23	5,5	14	2,3	33	25	42	M5 x 0,8	12,5	9,5	M10 x 1,0	47	-	6	9	75


Com amortecimento pneumático/dimensões diferentes da tabela abaixo

são as mesmas da	ão as mesmas da tabela acima.														
Diâmetro (mm)	В	С	GA	GB	LB	NA	NB	WA	WB	S	Z				
10	15	17	7,5	6,5	16,5	21	20	14,5	13,5	65	93				
16	18,3	20	7,5	6,5	23	21	20	14,5	13,5	66	94				


Modelo de flange dianteiro (F)

CJ2F Diâmetro - Curso Localização da porta no cabeçote traseiro

Com amortecimento pneumático: CJ2F Diâmetro - Curso A Localização da porta no cabeçote traseiro

Porca	da r	าลรา	e		
		32	d S	H ₂	erro
	Diàmetro	_	_		

Materiai: Ferro												
Referência	Diámetro aplicável (mm)	B ₂	C ₂	d	H ₂							
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4							
NTJ-010A	10	7	8,1	M4 x 0,7	3,2							
NTJ-015A	16	8	9,2	M5 x 0,8	4							

* Para detalhes da	norca de montagem	, consulte a página 71.

	Tara detaines da porta de montagem, consulte a pagina 71.														(111111)						
Diâmetro (mm)	Α	В	С	D	F	FB	FC	FT	FX	FY	FZ	GA	GB	Н	MM	NA	NB	NN	S	Т	Z
6	15	12	14	3	8	13	4,5	1,6	24	14	32	14,5	-	28	M3 x 0,5	16	7	M6 x 1,0	49	3	77
10	15	12	14	4	8	13	4,5	1,6	24	14	32	8	5	28	M4 x 0,7	12,5	9,5	M8 x 1,0	46	_	74
16	15	18,3	20	5	8	19	5,5	2,3	33	20	42	8	5	28	M5 x 0,8	12,5	9,5	M10 x 1,0	47	_	75

Com amortecimento pneumático/dimensões diferentes da tabela abaixo são as mesmas da tabela acima.

Diâmetro (mm)	В	С	FB	GA	GB	NA	NB	WA	WB	S	Z
10	15	17	14,5	7,5	6,5	21	20	14,5	13,5	65	93
16	18,3	20	19	7,5	6,5	21	20	14,5	13,5	66	94

D-□

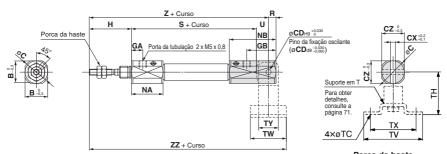
MB

MB1 CA2

CA2

CS1 CS2

-X□ Technical


Modelo de fixação oscilante traseira fêmea (D)

CJ2D Diâmetro - Curso Z + Curso S + Curso Porca da haste <u>øС</u>Dнэ +0,030 NB CX +0.2 Pino da fixação oscilante Porta da tubulação 2 x M5 x 0,8 GB MM (øcdd9-0.030) Suporte em T $\stackrel{N}{\circ}$ Para obter 프 detalhes. NA consulte a página 71. B.8.3 4×øTC ZZ + Curso

* O pino de fixação oscilante e o anel retentor são enviados juntos.

Com amortecimento pneumático: CJ2D Diâmetro - Curso A

orca	da na	ste			
	B	<u>ر</u> ن (d	H ₂	
			Ma	terial: F	erro
teferência	Diâmetro soliséus (mm)	B ₂	C2	d	н

NTJ-015A 16 8 9,2 M5 x 0,8 4

7 8,1 M4 x 0,7 3,2

NTJ-010A 10

* O pino de fixação oscilante e o anel retentor são enviados juntos.

																		(mm)
Diâmetro (mm)	Α	В	С	CD(cd)	СХ	CZ	D	GA	GB	Н	MM	NA	NB	R	S	U	Z	ZZ
10	15	12	14	3,3	3,2	12	4	8	18	28	M4 x 0,7	12,5	22,5	5	46	8	82	93
16	15	18.3	20	5	6.5	18.3	5	8	23	28	M5 x 0.8	12.5	27.5	8	47	10	85	99

Dimensões do suporte em T											
	Diâmetro (mm)	TC	TH	TV	TW	TX	TY				
	10	4,5	29	40	22	32	12				
	16	5,5	35	48	28	38	16				

Com amortecimento pneumático/dimensões diferentes da tabela abaixo são as mesmas da tabela acima

são as mesmas da tabela acima.												
Diâmetro (mm)	В	С	CZ	GA	GB	NA	NB	S	WA	WB	Z	ZZ
10	15	17	15	7,5	19,5	21	33	65	14,5	26,5	101	112
16	18,3	20	18,3	7,5	24,5	21	38	66	14,5	31,5	104	118

Série CJ2

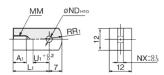
Dimensões do suporte do acessório

Junta articulada simples

Pino de fixação oscilante

Pino da articulação

CJ1


CJP

CJ2

CM2 -Z

CM₂

(mm)

	L		
mt_	L ₁	tm	Ø
			ğ
h		─ ₩	- Q
			<u> </u>

mt	L L1	ţm	_O
			SDQ¢
]]]	<u>si</u>

Material: Aço laminado											
Referência											
I-J010B						3,1	8	9			
I-J016B	16	8	25	M5 x 0,8	5 +0,048	6,4	12	14			

iviateriai: Aço inoxidavei											
Referência	Diámetro aplicável (mm)	Dd9	d	L	Lı	m	t	Anel de pressão aplicável			
CD-J010	10	3,3-0,030	3	15,2	12,2	1,2	0,3	Tipo C 3,2			
CD-Z015	16	5-0,030	4,8	22,7	18,3	1,5	0,7	Tipo C 5			
CD-JA010*	10	3,3-0,030	3	18,2	15,2	1,2	0,3	Tipo C 3,2			
com am vazão in	CD-JA010* 10 3.3366 33 182 152 1,2 0,3 Tpo C32 • Para o modelo de fixação oscilante traseira fêmea o10, com amortecimento pneumático e válvula reguladora de vazão integrada. • Pinos de fixação oscilante com anéis retentores.										

Material: Aço inoxidável d L L t m CD-J010 10 3,3-0,030 3 15,2 12,2 1,2 0,3 Tipo C 3,2 4,8 16,6 12,2 1,5 0,7 Tipo C 5 IY-J015 16 5 -0,030 * Para tamanho ø10, o pino da fixação oscilante é desviado.

Os pinos da articulação são enviados com os anéis retentores

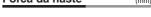
Garfo

Porca de montagem

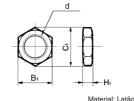
Porca da haste

CM3 CG1 -Z CG₁

CG3


CA₂

CS₁


CS₂

MB MB MB1

d	_
ुं व	
B ₂ ►	→ H ₂

Material: Aço laminad										
Referência	Diâmetro aplicável (mm)	A ₁		L	L	_1		MM		
Y-J010B	10	8	15,2		2	1 M		4 x 0,7		
Y-J016B	16	11	16	6,6	2	1	M	5 x 0,8		
Part no.	ND _{d9}	NDH		N.	~	В	,	U₁		
Part no.	INDd9			IN.	^_		11	U1		
Y-J010B	3,3 -0,030	3,3 +0,0	148	3,	2	8	3	10		
Y-J016B	5 -0,030	5 +0,048		6,	5	1	2	10		
 O pino da articulação e o anel retentor são fornecidos juntos. 										

B₁ C₁ H₁ Referência SNJ-006B 6 8 9,2 M6 x 1,0 4 SNJ-010B 10 12 7 M8 x 1 0 4 SNJ-016B 16 14 16,2 M10 x 1.0 SNKJ-016B 17 16 19,6 M12 x 1,0 Para o tipo não rotativo ø16. (Use SNJ-016B para o

Material: Ferro B₂ Co H₂ Referência NTJ-006A M3 x 0,5 2.4 6 5,5 6,4 NTJ-010A 3,2 10 8,1 M4 x 0,7 8 M5 x 0,8 NTJ-015A 16 9,2

(mm)

Suporte em T

tipo não rotativo ø10.)

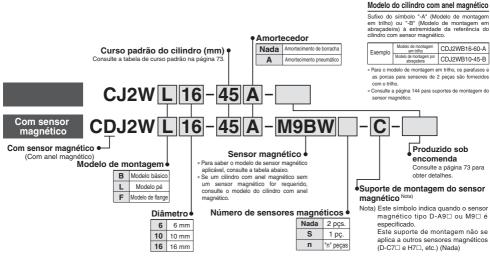
Referência	Diâmetro aplicável (mm)	тс	TD _{H10}	тн	тк	TN	тт	ΤU	τv	TW	тх	ΤY	TZ
CJ-T010B	10	4,5	3,3*0,048	29	18	3,1	2	9	40	22	32	12	8
CJ-T016B	16	5,5	5 *0,048	35	20	6,4	2,3	14	48	28	38	16	10
* O cuporto	om T inclu	ium	hace do c	unor	to or	ът.	unto	ortio	ulada	oim	nloc		

parafuso do cabeçote sextavado interno e arruela de pressão.

Tampa dianteira

Tipo redondo/CJ-CR□□□

(mm)


Material: Poliacetal											
Referência		Diâmetro		_	_	BABA	N	_	34/		
Tipo plano	Tipo redondo	aplicável (mm)		D	L	MM	N	К	W		
CJ-CF006	CJ-CR006	6	6	8	11	M3 x 0,5	5	8	6		
CJ-CF010	CJ-CR010	10	8	10	13	M4 x 0,7	6	10	8		
CJ-CF016	CJ-CR016	16	10	12	15	M5 x 0,8	7	12	10		

D-□ -X□

Technical

Cilindro de ar: Tipo padrão Dupla ação, Haste passante Série CJ2W ø6, ø10, ø16

Como pedir

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos

		_				1 3		р	obter mais ii		_				<u> </u>											
	Tensão da carga					carga	Mo	odelo do ser	nsor magnét	ico	Comprimento do cabo (m)															
Função especial	ção especial entrada e Cabeamento (Saída)	C4	Montagem em banda (ø6 a ø16) Montagem em trilho (ø10, ø16)			0,5	1	3	5	Nerhuma		Carga a	aplicável													
	Cictioa	28	(,		CC	CA	Perpendicular	Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)											
			3-fios (NPN)				M9NV	M9N	M9NV	M9N	•	•	•	0	_	0										
	Grommet		3-fios (PNP)	1	5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Cl									
_				1			M9BV	M9B	M9BV	M9B	•	•	•	0	_	0										
	Conector	1	2-fios		12 V		_	H7C	J79C	_	•	_	•	•	•	_	_									
Indicação da		1	3-fios (NPN)	1			M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0										
diagnóstico		Sim	3-fios (PNP)	24 V	5 V, 12 V	_	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuito de Cl	neie,								
(indicador de 2 cores)			2-fios	1	12 V	V	M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0	_	CLP								
Resistente	Grommet		3-fios (NPN)	1		1	M9NAV****	M9NA****	M9NAV****	M9NA****	0	0	•	0	_	0										
à água 3-fios (P	3-fios (PNP)	1	5 V, 12 V		M9PAV****	M9PA****	M9PAV****	M9PA****	0	0	•	0	_	Circuit	Circuito de Cl) CI										
2 cores)			2-fios	1	12 V	12 V	V	2 V	12 V	12 V	M9BAV****	M9BA****	M9BAV****	M9BA****	0	0	•	0	_	0	_					
Com saída de diagnóstico (indicador de 2 cores)			4-fios (NPN)	1	5 V, 12 V		_	H7NF***	_	F79F	•	_	•	0	_	0	Circuito de Cl	Circuito de Cl								
,			3-fios																							
			(equivalente a NPN)	_	5 V	_	A96V	A96	A96V	A96	•	_	•	_	_	-	Circuito de Cl	_								
	Grommet	Sim	,	1	_	200 V	_	_	A72	A72H	•	_	•	_	_	_										
_						100 V	A93V	A93	A93V	A93	•	_	•	•	_	_	-									
		Não				100 V ou menos	A90V	A90	A90V	A90	•	_	•	_	_	_	Circuito de Cl	Relé.								
Sim 2-fi		Sim	Sim	Sim	Sim	Sim	Sim	Sim	Sim	Sim	2-fins	24 V	12 V	_	_	C73C	A73C	_	•	_	•	•	•	_	_	CLP
	Conector	Não				24 V ou menos	_	C80C	A80C	_	•	_	•	•	•	_	Circuito de Cl	1								
Indicação de diagnóstico	Grommet	Sim			_	_	_	_	A79W**	_	•	_	•	_	_	_	_	1								
	Indicação de diagnóstico (indicador de 2 cores) Resistente à água (indicador de 2 cores) Cornada de diagnóstico Cornada de diagnóstico (indicador de 2 cores)	Grommet Indicação de diagnóstico (indicador de 2 cores) Plesistente à água (indicador de 2 cores) Com sada de diagnóstico (indicador de 2 cores) Grommet Grommet Grommet	Função especial elétrica Grommet Conector Indicação de diagnóstico (indicador de 2 cores) Resistente à água (indicador de 2 cores) Com salada de diagnóstico (indicador de 2 cores) Grommet Sim Não Conector Não Conector	Grommet Grommet Grommet Grommet Jafios (NPN) 3-fios (NPN) 2-fios 3-fios (NPN) 4-fios (NPN)	Função especial Entrada 25 25 25 25 25 25 25 2	Função especial Entrada 25 25 25 25 27 27 27 27	Grommet 3-fios (NPN) 3-fios (NPN) 5 V, 12 V 12 V	Função especial elétrica Sim Conedor C	Função especial Entrada Entrada Editica Entrada Editica Entrada Editica Entrada Entrad	Função especial Entrada elétrica 25 25 25 25 25 25 25 2	Função especial Entrada Entrad	Função especial Entrada elétrica Salasamento eletrica Salasa	Função especial elétrica 3 3 3 3 3 3 3 3 3	Função especial elétrica 3 3 3 3 3 3 3 3 3	Função especial Entrada 2 2 2 2 2 2 2 2 2	Função especial Função esp	Função especial Entrada elétrica 25 25 25 25 25 25 25 2	Função especial Entrada 3 3 3 3 5 6 6 6 6 6 6 6 6 6								

^{*} Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes

^{*} Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627
** "D-A79W" não pode ser montado no cilindro de diámetro e10 com amortecimento pneumático.

^{*** &}quot;D-H7NF" não pode ser montado no cilindro de diâmetro ø6

^{*}Os sensores magnéticos D-AII□/M9□□□/A7□□/A80□/F7□U/M7□ são enviados juntos (não montados). (No entanto, quando os tipos D-A9□□M9□□□ forem selecionados, somente os suportes de montagem do sensor magnético serão montados antes do envic.)

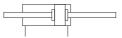
*Ouando os tipos D-A9□□/M9□□□ forem montados antes do envic.)

*Ouando os tipos D-A9□□/M9□□□ forem montados em um trilho de ø10 ou ø16, peça os suportes de montagem do sensor magnético separadamente.

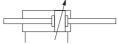
*Consulte a página 144 para obter detalhes.

Cilindro de ar: Tipo padrão Dupla ação, Haste passante

Série CJ2W


Especificações

Diâmetro (mm	1)	6	10	16	
Ação		Dupla	a ação, Haste pas	sante	
Fluido			Ar		
Pressão de teste			1 MPa		
Pressão máxima de traba	lho	0,7 MPa			
Pressão mínima de trabalho	Amortecimento de borracha	0,15 MPa	0,1 [MРа	
Tressao minima de trabamo	Amortecimento pneumático	_	0,1 [MРа	
Temperatura ambiente e o	lo fluido	Sem sensor magnético: -	10°C a 70°C, Com sensor n	nagnético: -10°C a 60°C *	
Amortecedor		Amortecedor de b	orracha/Amortecin	nento pneumático	
Lubrificação		Não requ	uer (dispensa lubr	ificação)	
Tolerância de comprimen	to do curso		+1,0 0		
Velocidade do pistão	Amortecimento de borracha		50 a 750 mm/s		
velocidade do pistao	Amortecimento pneumático		50 a 1000 mm/s		
	Amortecimento de borracha	0,012 J	0,035 J	0,090 J	
Energia cinética admissível	Amortecimento pneumático (Comprimento eficaz do amortecedor)		0,07 J (9,4 mm)	0,18 J (9,4 mm)	


^{*} Sem congelamento

Símbolo

Dupla ação, Haste passante, Amortecimento de borracha

Amortecimento pneumático

Curso padrão

zarso paarao	(iii				
Diâmetro (mm)	Curso padrão				
6, 10, 16	15, 30, 45, 60				

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação

Especificações produzidas sob encomenda (Para obter detalhes, consulte as páginas 1675 a 1818).

Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XB6	Cilindro resistente ao calor (150°C) * Não disponível com o sensor e com o amortecimento pneumático
-XB7	Cilindro resistente ao frio * Não disponível com o sensor e com o amortecimento pneumático
-XC22	Vedações de borracha de flúor * Não disponível com o amortecimento pneumático
-XC51	Com bico de mangueira

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

· Curso mínimo para montagem do sensor magnético

· Referência do suporte de montagem do sensor

CS₁

CS2

CJ1 CJP

CJ2 CM2 CM2 СМЗ CG1 -Z

CG₁

CG3 MB -Z

MB

MB1

CA2

CA2

Technical

Série CJ2W

Equipamento padrão

Opcional

Modelo de montagem e acessório/

Porca de montagem

Para obter detalhes, consulte a página 71.

Montagem

Porca da haste

Junta articulada simples

OPeça separadamente.								
odelo pé	Modelo de flange							
•	•							
•	•							

^{*} O pino da articulação e o anel retentor são enviados junto com a junta articulada dupla.

Modelo básico

Mo

Ref. do suporte de montagem

Suporte de		Diâmetro (mm)	
montagem	6	10	16
Suporte tipo pé	CJ-L006B	CJ-L010B	CJ-L016B
Suporte do flange	CJ-F006B	CJ-F010B	CJ-F016B

Peso

Peso										
Diâmetro (n	nm)	6	10	16						
Peso básico *		27	60							
Peso adicional por cada 15	mm de curso	3	6	9						
Peso do suporte	Modelo pé	16	16	40						

A porca de montagem e a porca da haste estão incluídas no neso hásico.

Modelo de flange

5 5 15

Cálculo: (Exemplo)

de montagem

CJ2WL10-45

Paca hácica	32	(a10)

- Peso do suporte de montagem ·······16 (Modelo de pé)
 32 + 6/15 x 45 + 16 = 66 g

Saída teórica

Consulte "Cilindro de dupla ação" em Saída teórica 1 de Dados técnicos 3 na página 1825. No caso do modelo de haste passante, a força no lado de ENTRADA será sua saída teórica.

⚠ Precaucões

Leia antes do manuseio.

Consulte o prefácio 57 para Instruções de Segurança e as páginas 3 a 12 para Precauções com o sensor magnético e o atuador.

Montagem

. Cuidado

- Durante a instalação, prenda o cabeçote dianteiro e aperte a porca de retenção ou o corpo do cabeçote dianteiro aplicando a força de aperto adequada. Se o cabeçote traseiro estiver preso ou apertado, a tampa pode girar levando a desvio.
- Aperte os parafusos retentores de acordo com o torque de aperto apropriado dentro da faixa fornecida abaixo.
 a6: 2,1 a 2,5 N·m, o10: 5,9 a 6,4 N·m,
 - ø6: 2,1 a 2,5 N·m, ø10: 5,9 a 6,4 N·m ø16: 10.8 a 11.8 N·m
- 3. Para remover e instalar o anel retentor para o pino da articulação, use uma pinça adequada (ferramenta para instalar um anel retentor tipo C do orifício). Em particular, use uma pinça ultrapequena para remover e instalar os anéis retentores no cilindro de ø10.
- 4. No caso do modelo de montagem em trilho do sensor magnético, não remova o trilho que está montado. Como os parafusos retentores se estendem no cilindro, isso pode levar a um vazamento de ar.

[·] Para obter o peso do suporte do acessório, consulte a página 64.

Série Limpa

10-CJ2W Modelo de montagem Diâmetro - Curso
Série Limpa

Cilindro de ar aplicável para o sistema que descarrega vazamento do corte da haste diretamente para a parte externa da sala limpa pela porta de alívio e fazendo um corte da haste do atuador tendo uma construção de vedação dupla.

Especificações

Ação	Dupla ação, Haste passante
Diâmetro (mm)	10, 16
Pressão máxima de trabalho	0,7 MPa
Pressão mínima de trabalho	0,1 MPa
Amortecedor	Amortecimento de borracha
Curso padrão (mm)	Igual ao do tipo padrão. (Consulte a página 73.)
Sensor magnético	Montável (modelo de montagem em abraçadeira)
Montagem	Modelo básico, modelo de pé, modelo de flange

CJ1

CJP CJ2

CJ2

CM2 -Z

CM2

CM3

CG1 -Z

CG1

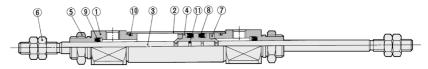
MB -Z

MB

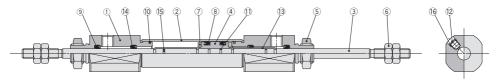
MB1 CA2 -Z

CA2 CS1

CS2


Para obter detalhes, consulte o catálogo separado "Série limpa".

Construção (Não é possível desmontar)

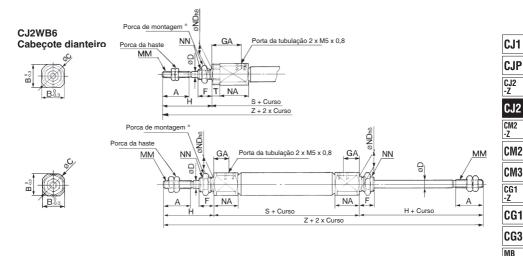


Série CJ2W

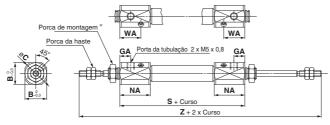
Construção (Não é possível desmontar)

Com amortecimento pneumático

Lista de peças


Nº	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Tubo do cilindro	Aço inoxidável	
3	Haste do pistão	Aço inoxidável	
4	Pistão	Latão	ø6
-	FISIAU	Liga de alumínio	ø10, ø16
5	Porca de montagem	Latão	Revestido com níquel
6	Porca da haste	Aço laminado	Zinco cromado
7	Amortecedor	Uretano	
8	Vedação do pistão	NBR	
9	Vedação da haste	NBR	
10	Gaxeta da camisa	NBR	
11	Gaxeta do pistão	NBR	

Dedicado para tipo com amortecimento pneumático


Nº	Descrição	Material	Nota
12	Agulha de amortecimento	Aço inoxidável	
13	Anel de amortecimento	Latão	
14	Vedação de retenção	NBR	
15	Gaxeta do anel de amortecimento	NBR	
16	Vedação da agulha	NBR	

Modelo básico (B)

CJ2WB Diâmetro - Curso

Com amortecimento pneumático: CJ2WB Diâmetro - Curso A

Porca da haste

			N	/laterial:	Ferro
Referência	Diâmetro aplicável (mm)	B ₂	C ₂	d	H ₂
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

* Para detalhes da porca de montagem, consulte a página 71.

														(mm)
Diâmetro (mm)	Α	В	С	D	F	GA	Н	MM	NA	ND h8	NN	S*	Т	Z *
6	15	12	14	3	8	14,5	28	M3 x 0,5	16	6-0,018	M6 x 1,0	61 (66)	3	117 (122)
10	15	12	14	4	8	8	28	M4 x 0,7	12,5	8-0,022	M8 x 1,0	49	-	105
16	15	18,3	20	5	8	8	28	M5 x 0,8	12,5	10_0,022	M10 x 1,0	50	-	106

* () em dimensões S e Z: Com sensor magnético

Com amortecimento pneumático/dimensões diferentes da tabela abaixo são as mesmas da tabela acima.

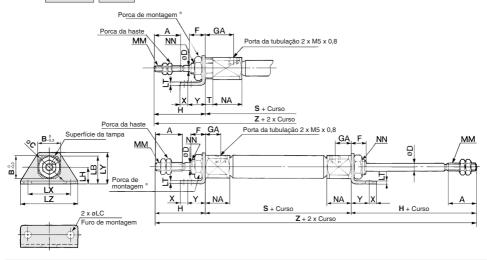
Diâmetro (mm)	В	С	GA	NA	WA	S	Z
10	15	17	7,5	21	14,5	66	122
16	18,3	20	7,5	21	14,5	67	123

Technical data

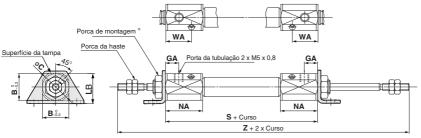
D-□

-X□

MB1


CA2

CS1


Série CJ2W

Modelo tipo pé (L)

CJ2WL Diâmetro - Curso

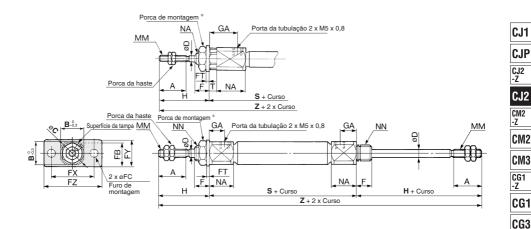
Com amortecimento pneumático: CJ2WL Diâmetro - Curso A

				matoria.	
Referência	Diámetro aplicável (mm)	B ₂	C ₂	d	H ₂
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4
					/ma.ma.\

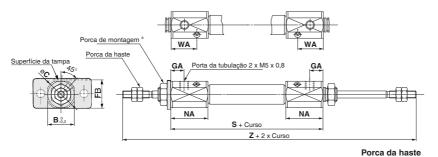
* Para detalhes da porca de montagem, consulte a página 71.

Diâmetro (mm)	Α	В	С	D	F	GA	Н	LB	LC	LH	LT	LX	LY	LZ	MM	NA	NN	S*	Т	Х	Υ	Z *
6	15	12	14	3	8	14,5	28	15	4,5	9	1,6	24	16,5	32	M3 x 0,5	16	M6 x 1,0	61 (66)	3	5	7	117 (122)
10	15	12	14	4	8	8	28	15	4,5	9	1,6	24	16,5	32	M4 x 0,7	12,5	M8 x 1,0	49	-	5	7	105
16	15	18,3	20	5	8	8	28	23	5,5	14	2,3	33	25	42	M5 x 0,8	12,5	M10 x 1,0	50	-	6	9	106

Com amortecimento pneumático/dimensões diferentes da tabela abaixo são as mesmas da tabela acima.


Diâmetro (mm)	В	GA	LB	NA	WA	S	Z
10	15	7,5	16,5	21	14,5	66	122
16	18,3	7,5	23	21	14,5	67	123

* () em dimensões S e Z: Com sensor magnético



Modelo de flange (F)

CJ2WF Diâmetro - Curso

Com amortecimento pneumático: CJ2WF Diâmetro - Curso A

				Materia	I: Ferro
Referência	Diâmetro aplicável (mm)	B2	C ₂	d	H ₂
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4
					(mm)

* Para detalhes da porca de montagem, consulte a página 71.

Diâmetro (mm)	Α	В	С	D	F	FB	FC	FT	FX	FY	FZ	GA	Н	MM	NA	NN	S*	Т	Z *
6	15	12	14	3	8	13	4,5	1,6	24	14	32	14,5	28	M3 x 0,5	16	M6 x 1,0	61 (66)	3	117 (122)
10	15	12	14	4	8	13	4,5	1,6	24	14	32	8	28	M4 x 0,7	12,5	M8 x 1,0	49	-	105
16	15	18,3	20	5	8	19	5,5	2,3	33	20	42	8	28	M5 x 0,8	12,5	M10 x 1,0	50	-	106

Com amortecimento pneumático/dimensões diferentes da tabela abaixo são as mesmas da tabela acima.

Diâmetro (mm)	В	FB	GA	NA	WA	S	Z
10	15	14,5	7,5	21	14,5	66	122
16	18,3	19	7,5	21	14,5	67	123

* (em (dimensões	S	е	Z:	Com	sensor	magne	éti	C
-----	------	-----------	---	---	----	-----	--------	-------	-----	---

D-□
v

MB

MB MB1

CA2

CA2 CS₁

CS₂

Technical

Cilindro de ar: Tipo padrão Simples ação, retorno/avanço por mola Série CJ2 ø6, ø10, ø16

Como pedir Modelo do cilindro com anel magnético Sufixo do símbolo "-A" (Modelo de montagem em trilho) ou "-B" (Modelo de montagem em abraçadeira) à extremidade da referência do cilindro com sensor magnético. s Simples ação, retorno por mola Curso padrão do cilindro (mm) 9 Exemplo em trilho Modelo de montagem por abraçadeira Т Simples ação, avanço por mola Consulte a tabela de curso padrão na página 81. CDJ2B10-45S-B * Para o modelo de montagem em trilho, os parafusos e as porcas para sensores de 2 peças são fornecidos com o trilho. CJ2 L 16 - 45 Consulte a página 144 para suportes de montagem do sensor magnético. Com sensor **CDJ2 L** 16 M9BW magnético Produzido sob encomenda Com sensor magnético Sensor magnético Consulte a página 81 para obter detalhes. (Com anel magnético) Para saber o modelo de s Suporte de montagem do sensor aplicável, consulte a tabela abaixo. Modelo de montagem * Se um cilindro com anel magnético sem um Modelo básico sensor magnético for requerido, consulte o Nota) Este símbolo indica quando o sensor modelo do cilindro com anel magnético. magnético tipo D-A9□ ou M9□ é Modelo pé axial Localização da porta no F Modelo de flange dianteira Este suporte de montagem não se cabeçote traseiro aplica a outros sensores magnéticos Modelo de fixação oscilante traseira fêmea: (Exceto ø6) D (D-C7□ e H7□, etc.) (Nada) a10 a16 Diâmetro 9 Nada Número de sensores magnéticos Pernendicular ao eixo 6 6 mm R Axial Axial Nada 2 pçs. 10 10 mm s 1 pç. 16 mm está disponível somente para 90° para o eixo. Não aplicável para simples ação, avanço por "n" pecas

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		F	ador		Т	ensão da	carga	Mo	delo do ser	nsor magné	tico	Comp	rimen	to do	cabo	(m)																							
Tipo	Função especial	Entrada elétrica	indicador	Cabeamento (saída)		СС	CA	Montagem em b		Montagem em t			1	3		Nenhum	Conector pré-cabeado	Carga a	plicável																				
		Olothiod	Fed	(,		00	OA.	Perpendicular	Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)	,																						
				3-fios (NPN)		5 V. 12 V		M9NV	M9N	M9NV	M9N	•	•	•	0	_	0	Circuito de CI																					
용	_	Grommet		3-fios (PNP)		5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Ci																					
sólido				2-fios		12 V		M9BV	M9B	M9BV	M9B	•	•	•	0	_	0	_																					
		Conector		2-1108		12 4		_	H7C	J79C	_	•	_	•	•	•	_																						
estado				3-fios (NPN)		5 V, 12 V		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0	Circuito de CI	Relé.																				
est	Indicação de diagnóstico (indicador de 2 cores)		Sim	3-fios (PNP)	24 V	J V, 12 V	-	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuit de Ci	CLP																				
e	(indicador de 2 cores)			2-fios		12 V		M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	-	0	—	OL:																				
٥	Resistente à água (indicador de 2 cores)	Grommet	et	3-fios (NPN)		5 V 12 V	V, 12 V						0	•	0	_	0	Circuito de CI																					
Sensor				3-fios (PNP)		J V, 12 V				M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Ci																			
တိ											2-fios		12 V		M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0	_														
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V	1	_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de CI																					
reed																								3-fios (equivalente a NPN)	_	5 V	_	A96V	A96	A96V	A96	•	-	•	-	_	_	Circuito de CI	_
		Grommet	Sim		1	_	200 V	_	_	A72	A72H	•	_	•	-	_	_																						
tipo	_						100 V	A93V	A93	A93V	A93	•	_	•	•	_	_	1 —																					
		Nā	Não	2-fios		12 V	100 V ou menos	A90V	A90	A90V	A90	•	_	•	_	_	_	Circuito de CI	Relé,																				
Sensor		^	Sim	Z-110S	24 V	12 V	_	_	C73C	A73C	_	•	_	•	•	•	_	_	CLP																				
Sei	Conector	Conector	Conector Nā	Conector	Conector Não			24 V ou menos	_	C80C	A80C	_	•	_	•	•	•	_	Circuito de CI	1																			
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_	_	A79W	_	•	_	•	_	_	_	_	1																				

- Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água.
- * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para
 - 1 m----- M (Exemplo) M9NWM 3 m----- L (Exemplo) M9NWL 5 m----- Z (Exemplo) M9NWZ
- - Nenhum ··· N (Exemplo) H7CN
- obter detalhes Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as
 - páginas 1626 e 1627.
- * Sensores de estado sólido marcados com "O" são produzidos após o recebimento do pedido.
 * Os sensores magnéticos D-A9\(\text{\tin\text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\texi\text{\text{\text{\texi\text{\text{\text{\text{\texit{
- selecionados, somente os suportes de montagem do sensor magnético serão montados anties do envio.)

 Quando os tipos D-A9□□/M9□□□ forem montados em um trilho de ø10 ou ø16, peça os suportes de montagem do sensor magnético separadamente. Consulte a página 144 para obter detalhes.

Cilindro de ar: Tipo padrão Simples ação, retorno/avanço por mola

Série CJ2

Símbolo

Simples ação, Retorno por mola, Amortecedor de borracha

Simples ação, Avanço por mola, Amortecedor de borracha

Produzido sob encomenda: Especificações individuais

(Para obter detalhes, consulte a página 145.)

Símbolo	Especificações
-X773	Espaçamento de montagem curto/Simples ação, Retorno por mola

Especificações produzidas sob encomenda (Para obter detalhes, consulte as páginas 1675 a 1818).

Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC22	Vedações de borracha de flúor
-XC51	Com bico de mangueira

Especificações

Diâmetro (mm	6	10 16			
Ação		Simples ação, Retorno por mola/Simples ação, Avanço por mola			
Fluido			Ar		
Pressão de teste	Pressão de teste				
Pressão máxima de trabal		0,7 MPa			
Pressão mínima de trabalho	Amortecimento de borracha	0,2 MPa	0,15	MPa	
r ressao minima de trabamo	Amortecimento pneumático	0,25 MPa	0,15 MPa		
Temperatura ambiente e d	o fluido	Sem sensor magnético: -10°C a 70°C, Com sensor magnético: -10°C a 60°C *			
Amortecedor		Amortecedor de borracha/Amortecimento pneumático			
Lubrificação		Não requer (dispensa lubrificação)			
Tolerância de compriment	+1,0 0				
Velocidade do pistão	50 a 750 mm/s				
Energia cinética admissíve	0,012J	0,035J	0,090J		
* Com congolamento					

(mm)

Curso padrão

Diâmetro (mm)	Curso padrão
6	15, 30, 45, 60
10	15, 30, 45, 60
16	15, 30, 45, 60, 75, 100, 125, 150

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Força de reação da mola

Diâmetro	Força de reação da mola (N				
(mm)	Primário	Secundário			
6	1,77	3,72			
10	3,53	6,86			
16	6,86	14,2			

Mola com carga de Mola com carga de montagem primária montagem secundária

Quando a mola é contraída

aplicando ar

ENTRADA SAÍDA

ajustada no cilindro

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

CJ1 CJP

C.12

CJ2 CM2

CM2

CM3

CG1 -Z

CG1

MB -Z

MB MB1

CA2 -Z

CA2

CS1

D-□ -X□

Technical data

^{*} Sem congelamento

Peso/Retorno por mola (S)

	Diâmetro (mm)	6	10	16
	Curso 15	11	26	58
	Curso 30	16	33	75
	Curso 45	18	42	97
Peso	Curso 60	23	51	119
básico *	Curso 75	_	_	140
	Curso 100	_	_	183
	Curso 125	_	_	219
	Curso 150	_	_	245
Peso do	Modelo pé axial	8	8	20
suporte de	Modelo de flange dianteira	5	5	15
montagem	Modelo de fixação oscilante traseira fêmea (com pino)	_	4	10

- * A porca de montagem e a porca da haste estão incluídas no peso básico.
 ** A porca de montagem não está fixada ao modelo de fixação oscilante traseira fêmea, portanto, o peso da porca de montagem já foi subtraído.
- Cálculo: (Exemplo) CJ2L10-45S

 - Peso do suporte de montagem ··· 8 (Modelo do pé axial)
 42 + 8 = 50 q

Peso/Avanço por mola (T)

	3 1 ()			(3)
	Diâmetro (mm)	6	10	16
	Curso 15	17	26	59
	Curso 30	21	32	75
	Curso 45	23	41	95
Peso	Curso 60	27	49	116
básico *	Curso 75	_	_	135
	Curso 100	_	_	173
	Curso 125	_	_	207
	Curso 150	_	_	231
Peso do suporte de	Modelo pé axial	8	8	20
	Modelo de flange dianteira	5	5	15
montagem	Modelo de fixação oscilante traseira fêmea (com pino)	_	4	10

- A porca de montagem e a porca da haste estão incluídas no peso básico.
 A porca de montagem não está fixada ao modelo de fixação oscilante traseira fêmea, portanto, o peso da porca de montagem já foi subtraído.
- Cálculo: (Exemplo) CJ2L10-45T
 - Peso básico ------ 41 (curso ø10-45)
 - Peso do suporte de montagem · · · 8 (Modelo do pé axial)

41 + 8 = 49 g

Ref. do suporte de montagem

riei. do suporte de montagem									
Suporte de		Diâmetro (mm)							
montagem	6	10	16						
Suporte tipo pé	CJ-L006B	CJ-L010B	CJ-L016B						
Suporte do flange	CJ-F006B	CJ-F010B	CJ-F016B						
Suporte em T *	_	CJ-T010B	CJ-T016B						

^{*} O suporte em T é usado com fixação oscilante traseira fêmea (D).

Modelo de montagem e acessório/

Para obter detalhes, consulte a página 71.

●...Montado no produto. O...Peca separadamente.

	Montagem	Modelo básico	Modelo pé axial	Modelo de flange dianteira	Modelo de * fixação oscilante traseira fêmea
ento	Porca de montagem	•	•	•	_
Equipamento padrão	Porca da haste	•	•	•	•
Egui	Pino da fixação oscilante	_	_	_	•
la l	Junta articulada simples	0	0	0	0
Opcional	Garfo *	0	0	0	0
ō	Suporte em T	_	_	_	0

O pino e o anel retentor são enviados junto com a fixação oscilante traseira fêmea e a junta articulada dupla. Para obter o peso do suporte, consulte a página 64.

Saída teórica

(a)

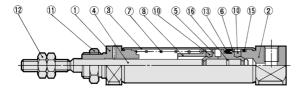
Consulte "Cilindro de Simples ação, Retorno por mola" em Saída teórica 1 de Dados técnicos 3 na página 1825. No caso do modelo de avanço por mola, a força no lado da saída será a força final do retorno por mola e no lado de entrada será a quantidade da força do lado de entrada do cilindro de modelo de dupla ação, da qual a força inicial do retorno por mola foi subtraído.

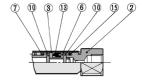
⚠ Precauções específicas do produto

Leia antes do manuseio.

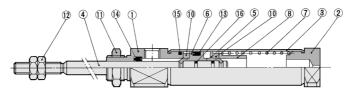
Consulte o prefácio 57 para Instruções de Segurança e as páginas I
3 a 12 para Precauções com o sensor magnético e o atuador.

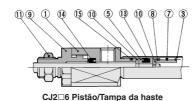
Montagem


∧ Cuidado


- Durante a instalação, prenda o cabeçote dianteiro e aperte a porca de retenção ou o corpo do cabeçote dianteiro aplicando a força de aperto adequada.
 - Se o cabeçote traseiro estiver preso ou apertado, a tampa pode girar levando a desvio.
- Áperte os parafusos retentores de acordo com o torque de aperto apropriado dentro da faixa fornecida abaixo.
 6: 2.1 a 2.5 N·m. ø10: 5.9 a 6.4 N·m.
- ø16: 10.8 a 11.8 N·m
- 3. No caso de um cilindro de simples ação, não opere-o de forma que uma carga não possa ser aplicada ao retrair a haste do pistão do modelo de retorno por mola ou ao estender a haste do pistão do modelo de avanço por mola. A mola integrada ao cilindro fornece força suficiente apenas para retrair a haste do pistão. Portanto, se for aplicada uma carga, a haste do pistão não poderá se retrair até a extremidade do curso.
- 4. No caso de um cilindro de simples ação, um orificio de respiro é fornecido na superfície da tampa. Certifique-se de não bloquear esse orifício durante a instalação, pois isso poderá levar a um mau funcionamento.
- Para remover e instalar o anel retentor para o pino da articulação ou o pino da fixação oscilante, use uma pinça adequada (ferramenta para instalar um anel retentor tipo C).
- Em particular, use pinças ultrapequenas para remover e instalar o anel retentor no cilindro de ø10.
- 6. No caso do modelo de montagem em trilho do sensor magnético, não remova o trilho que está montado. Como os parafusos retentores se estendem no cilindro, isso pode levar a um vazamento de ar.

Construção (Não é possível desmontar)


Simples ação, retorno por mola



CJ2□6 Pistão/Tampa do cabeçote traseiro

Simples ação, avanço por mola

Lista de pecas

	a as begans		
No.	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4	Haste do pistão	Aço inoxidável	
5	Pistão A	Latão	ø6
3	PISIAU A	Liga de alumínio	ø10, ø16
6	Pistão B	Latão	ø6
0	PISTAO B	Liga de alumínio	ø10, ø16
7	Mola de retorno	Aço	Zinco cromado
8	Assento da mola	Latão	

Nº	Descrição	Material	Nota
9	Retentor da vedação	Liga de alumínio	Anodizado limpo (avanço por mola ø6)
10	Amortecedor	Uretano	
11	Porca de montagem	Latão	Revestido com níquel
12	Porca da haste	Aço laminado	Zinco cromado
13	Vedação do pistão	NBR	
14	Vedação da haste	NBR	
15	Gaxeta da camisa	NBR	
16	Gaxeta do pistão	NBR	

CJP CJ2 -Z

CJ1

CJ2

CM2

CM2 СМЗ

CG1 -Z

CG1

CG3

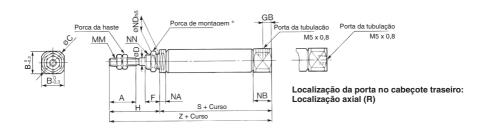
MB -Z MB

MB1 CA2

CA2

CS1

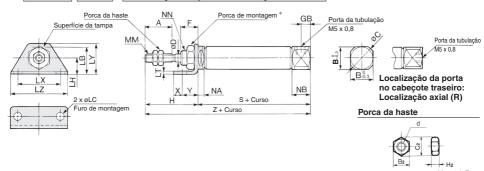
CS2


D-□ -X□

Technical

Simples ação, Retorno por mola: Modelo básico (B)

CJ2B Diâmetro - Curso S Localização da porta no cabeçote traseiro


* Para detalhes da porca de montagem, consulte a página 71.

																												(111111)
D:0																S	*							Z	*			
Diâmetr	D A	В	С	D	F	GB	H	MM	NA	NB	ND h8						curso				CUISO		curso		CUISO			curso
(mm)													5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
_	15		9		8			M3 x 0.5	3		6-0.018	M6 x 1.0	34,5	43,5	47,5	61,5					62,5	71,5	75,5	89,5				
О	15	°	9	3	°	_	28	IVIO X U,O	3	l ′	0-0,018	MOX1,U	(39,5)	(48,5)	(52,5)	(66,5)	-	_	-	_	(67,5)	(76,5)	(80,5)	(94,5)	_	_	_	_
10	15	12	14	4	8	5	28	M4 x 0,7	5,5	9,5	8-0,022	M8 x 1,0	45,5	53	65	77	-	-	-	-	73,5	81	93	105	-	-	-	-
16	15	18,3	20	5	8	5	28	M5 x 0,8	5,5	9,5	10-0,022	M10 x 1,0	45,5	54	66	78	84	108	126	138	73,5	82	94	106	112	136	154	166

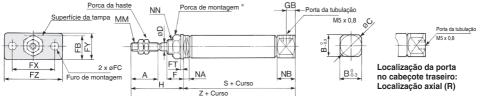
^{* ()} em dimensões S e Z: Com sensor magnético

Simples ação, Retorno por mola: Modelo de pé axial (L)

CJ2L Diâmetro - Curso S Localização da porta no cabeçote traseiro

				Material:	Ferro
Referência	Diámetro aplicável (mm)	B ₂	C ₂	d	H ₂
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

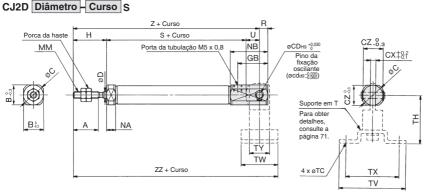
(mm)


^{*} Para detalhes da porca de montagem, consulte a página 71.

Diâmetro .																								<u>S</u>	*							Z	*			
(mm) A	E	3 0) [F	G	ВН	L	BL	C	_H	LT	LX	LY	LZ	MM	NA	NB	NN	Х										curso 5 a 15					curso 76 a 100		curso 126 a 150
6 15	8	3 9	3	8	-	28	3 1	3 4	,5	9	1,6	24	16,5	32	M3 x 0,5	3	7	M6 x 1,0	5	7	34,5 (39,5)			61,5 (66,5)	-	-	-	_	. , .		75,5 (80,5)	, .	-	-	-	-
10 15	12	2 1	4 4	8	5	28	3 1	5 4	,5	9	1,6	24	16,5	32	M4 x 0,7	5,5	9,5	M8 x 1,0	5	7	45,5	53	65	77	-	-	-	-	73,5	81	93	105	-	-	-	-
16 15	18	,3 2	0 5	8	5	28	3 2	3 5	,5	14	2,3	33	25	42	M5 x 0,8	5,5	9,5	M10 x 1,0	6	9	45,5	54	66	78	84	108	126	138	73,5	82	94	106	112	136	154	166

^{* ()} em dimensões S e Z: Com sensor magnético

Simples ação, Retorno por mola: Modelo de flange dianteira (F)


CJ2F Diâmetro - Curso S Localização da porta no cabeçote traseiro

* Para detalhes da porca de montagem, consulte a página 71.

s Diâmetro В С D F FBFC FT FXFYFZGB H NA NB curso curso curso curso curso curso 61 a 75 76 a 100 curso curso curso 26 a 150 5 a 15 (mm) 5 a 15 | 16 a 30 16 a 30 | 31 a 45 46 a 60 34,5 43,5 47,5 61,5 62,5 71,5 75,5 89.5 6 9 4,5 1,6 24 14 32 28 M3 x 0,5 3 (39.5) (52,5) (67.5) (76,5) (80,5) (48.5) (94.5) 8 13 4,5 1,6 24 14 32 5 28 M4 x 0,7 5,5 9,5 M8 x 1,0 45,5 53 65 77 73,5 81 93 105 15 183 20 5 8 19 5,5 2,3 33 20 42 5 28 M5 x 0,8 5,5 9,5 M10 x 1,0 45,5 5 4 66 78 84 108 126 | 138 | 73,5 | 82 | 94 | 106 | 112 | 136 | 154 | 166 * () em dimensões S e Z: Com sensor magnético

Simples ação, Retorno por mola: Modelo de fixação oscilante traseira fêmea (D)

Porca da haste

				materiai:	rerro
Referência	Dämetro aplicável (mm)	B2	C ₂	d	H ₂
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

* O pino de fixação oscilante e o anel retentor são enviados juntos.

																														(mm)
D:0																		,	3							7	Z			
Diâmetro (mm)	Α	В	С	CD (cd)	СХ	CZ	D	GB	Н	MM	NA	NB	R	U	curso 5 a 15							curso 126 a 150							curso 101 a 125	
10	15	12	14	3,3	3,2	12	4	18	20	M4 x 0,7	5,5	22,5	5	8	45,5	53	65	77	-	_	_	-	73,5	81	93	105	-	-	-	-
16	15	18,3	20	5	6,5	18,3	5	23	20	M5 x 0,8	5,5	27,5	8	10	45,5	54	66	78	84	108	126	138	75,5	84	96	108	114	138	156	168

Diâmetro				Z	Z			
(mm)	curso 5 a 15	curso 16 a 30	curso 31 a 45	curso 46 a 60	curso 61 a 75	curso 76 a 100	curso 101 a 125	curso 126 a 150
10	84,5	92	104	116	-	-	-	_
16	89,5	98	110	122	128	152	170	182

Diâmetro (mm)	тс	тн	TV	TW	тх	TY
10	4,5	29	40	22	32	12
16	5.5	35	48	28	38	16

CJ1 **CJP**

CJ₂

CM2

CM₂

CM3

CG1

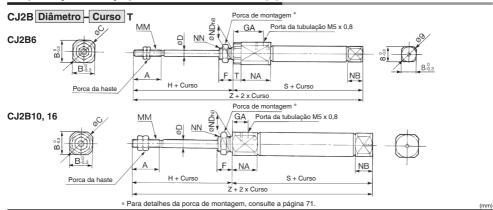
CG₁

CG3 MB

MB

MB1

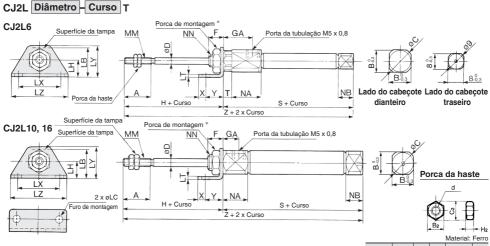
CA2 CA₂


CS₁

CS₂

D-□

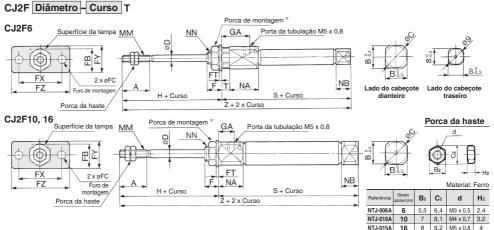
-X□ Technical


Simples ação, Avanço por mola: Modelo básico (B)

																	S	*							Z	*			
Diâmetro (mm)	Α	В	С	D	F	GΑ	Н	MM	NN	NA	NB	ND h8	Т					curso 61 a 75							curso 46 a 60				curso 126 a 150
()																			70 0 100	101012						01410	704 100	101 0 120	120 0 100
6		١		_			١	l			١.		_	46,5	55,5	59,5	73,5					74,5	83,5	87,5	101,5				
· ·	15	12	14	3	8	14,5	28	M3 x 0,5	M6 x 1,0	16	3	6-0,018	3	(51,5)	(60,5)	(64,5)	(78,5)	_	_	_	_	(79,5)	(88,5)	(92,5)	(106,5)	_	_	-	_
10	15	12	14	4	8	8	28	M4 x 0,7	M8 x 1,0	12,5	5,5	8_0,022	-	48,5	56	68	80	-	-	-	-	76,5	84	96	108	_	-	_	-
16	15	18,3	20	5	8	8	28	M5 x 0,8	M10 x 1,0	12,5	5,5	10-0,022	-	48,5	57	69	81	87	111	129	141	76,5	85	97	109	115	139	157	169

* () em dimensões S e Z: Com sensor magnético

Simples ação, Avanço por mola: Modelo de pé axial (L)

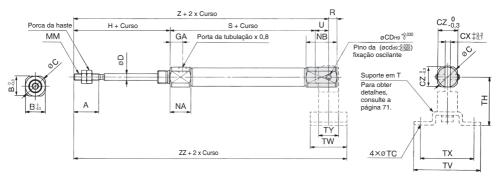

				Material:	Ferro
Referência	Diámetro aplicável (mm)	B ₂	C ₂	d	H ₂
NTJ-006A	6	5,5	6,4	M3 x 0,5	2,4
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

(mm)

 Para detalhes da porca de mo 	ontagem, consulte a página 71.
--	--------------------------------

Diâmetro					П																				S	*							Z	*			
(mm)	Α	В	С	D	F	GΑ	Н	LB	LC	LH	LT	LX	LY	LZ	ММ	NA	NB	NN	Т	X	Υ	curso 5 a 15	curso 16 a 30	curso 31 a 45	curso 46 a 60	curso 61 a 75	curso 76 a 100	curso 101 a 125	curso 126 a 150	curso 5 a 15	curso 16 a 30	curso 31 a 45	curso 46 a 60	curso 61 a 75	curso 76 a 100	curso 101 a 125	curso 126 a 150
6	15	12	14	3	8	14,5	28	15	4,5	9	1,6	24	16,5	32	M3 x 0,5	16	3	M6 x 1,0	3	5					73,5 (78,5)		-	-	-			87,5 (92,5)		-	-	-	-
10	15	12	14	4	8	8	28	15	4,5	9	1,6	24	16,5	32	M4 x 0,7	12,5	5,5	M8 x 1,0	_	5	7	48,5	56	68	80	-	-	-	-	76,5	84	96	108	-	-	_	-
16	15	18,3	20	5	8	8	28	23	5,5	14	2,3	33	25	42	M5 x 0,8	12,5	5,5	M10 x 1,0	_	6	9	48,5	57	69	81	87	111	129	141	76,5	85	97	109	115	139	157	169

Simples ação, Avanço por mola: Modelo de flange dianteira (F)


* Para detalhes da porca de montagem, consulte a página 71.

Diâmetro В С D F FB FC FT FX FY FZ GA H MM NA NB NN (mm) 46,5 55,5 59,5 73,5 74,5 83,5 87,5 6 3 8 13 4,5 1,6 24 14 32 14,5 28 M3 x 0,5 16 3 M6 x 1,0 3 (51,5) (60,5) (64,5) (78,5) (79,5) (88,5) (92,5) (106,5) 10 4 8 13 4,5 1,6 24 14 32 8 28 M4 x 0,7 12,5 5,5 M8 x 1,0 48,5 56 68 80 76,5 84 96 108 15 18,3 20 5 8 19 5,5 2,3 33 20 42 8 28 M5 x 0,8 12,5 5,5 M10 x 1,0 - 48,5 57 69 81 87 111 129 141 76,5 85 97 109 115 139 157 169

* () em dimensões S e Z: Com sensor magnético

Simples ação, Avanço por mola: Modelo de fixação oscilante traseira fêmea (D)

CJ2D Diâmetro - Curso T

* O pino de fixação oscilante e o anel retentor são enviados juntos.

																			3							Z	_			
Diâmetro (mm)	Α	В	С	CD (cd)	СХ	cz	D	GA	Н	MM	NA	NB	R		curso 5 a 15			curso 46 a 60												
10	15	12	14	3,3	3,2	12	4	8	28	M4 x 0,7	12,5	18,5	5	8	48,5	56	68	80	_	-	-	_	84,5	92	104	116	-	-	-	_
16	15	18,3	20	5	6,5	18,3	5	8	28	M5 x 0,8	12,5	23,5	8	10	48,5	57	69	81	87	111	129	141	86,5	95	107	119	125	149	167	179

ľ	Diâmetro				7	7			
	(mm)	curso 5 a 15	curso 16 a 30	curso 31 a 45	curso 46 a 60	curso 61 a 75	curso 76 a 100	curso 101 a 125	curso 126 a 15
	10	95,5	103	115	127	_	-	_	_
ĺ	16	100,5	109	121	133	139	163	181	193

Dimenso	es do	sup	orte	em I		
Diâmetro (mm)	тс	тн	TV	TW	тх	TY
10	4,5	29	40	22	32	12
16	5,5	35	48	28	38	16

SMC

CJ₁ **CJP**

CJ2

CM2 -Z CM₂

СМЗ

CG1

CG₁

CG3 MB -Z

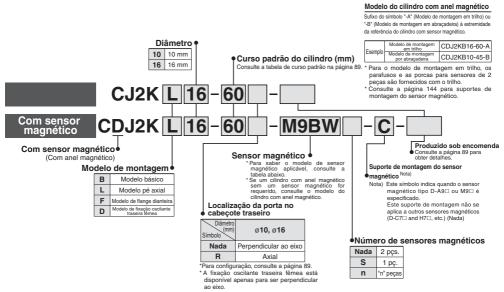
MB

MB1

CA2

CA₂

CS₁


CS₂

Cilindro de ar: Tipo de haste não rotativa Dupla ação, Haste simples

Série CJ2K

ø10, ø16

Como pedir

Sensores magnéticos anlicáveis/consulta as náginas 1559 a 1673 para obter mais informações sobre sensores magnéticos

	isores magi			apnoav	0.0	COTIGUITE	as pagin										grictio		
		Entrada	윦	Cabeamento	T	ensão da	carga	Mod	delo do ser	isor magné	tico	Comp	rimen	ito do	cabo	(m)			
Tipo	Função especial	elétrica	indicador	(saída)		00	CA	Montagem	em banda	Montagen	n em trilho	0,5	1	3	5	Nenhuma	Conector pré-cabeado	Carga a	plicável
		CICIIICA	Ped	(Salua)		CC	LA	Perpendicular	Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)	pro-caucauo		
				3-fios (NPN)				M9NV	M9N	M9NV	M9N	•	•	•	0	_	0		
유		Grommet		3-fios (PNP)	1	5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de CI	
sólido	_				1			M9BV	M9B	M9BV	M9B	•	•	•	0	_	0		
		Conector	1	2-fios		12 V		_	H7C	J79C	_	•	_	•	•	•	_	1 —	
estado			1	3-fios (NPN)	İ	5 1/ 40 1/		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0		
ast	Indicação de diagnóstico		Sim	3-fios (PNP)	24 V	5 V, 12 V	_	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuito de CI	Relé,
ge	(indicador de 2 cores)			2-fios	1	12 V		M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0	_	CLP
		Grommet		3-fios (NPN)	1	5 V, 12 V		M9NAV**	M9NA**	M9NAV**	M9NA**	0	0	•	0	_	0		1
ensor	Resistente à água (indicador de 2 cores)			3-fios (PNP)	1	5 V, 12 V		M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de CI	
Se	(indicador de 2 cores)			2-fios		12 V		M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0		
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V		_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de CI	
				3-fios		5 V		A96V	A96	A96V	A96							Circuito de CI	
reed				(equivalente a NPN)	_	J V		A90V	A90	A90V	A90		_	•	-	_		Circuito de Ci	
2		Grommet	Sim			_	200 V	_		A72	A72H	•	_	•	-	_	_		
tipo	_						100 V	A93V	A93	A93V	A93	•	_	•	•	_	_		
ž			Não	0.0		12 V	100 V ou menos	A90V	A90	A90V	A90	•	_		-	_	_	Circuito de CI	Relé,
Sensor		Conector	Sim	2-fios	24 V	12 0	_	_	C73C	A73C	_	•	_	•	•	•	_	_	CLP
Se		Conector	Não				24 V ou menos	_	C80C	A80C		•	_	•	•	•	_	Circuito de Cl	
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_	_	A79W	_	•	_	•	-	_	_	_	

Sensores magnéticos resistentes à áqua são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à áqua.

Consulte a SMC sobre os tipos resistentes à água com as referências acir * Símbolos de comprimento do cabo: 0,5 m....... Nada(Exemplo) M9NW * Como * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes * Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627.

¹ m M (Exemplo) M9NWM
3 m L (Exemplo) M9NWL
5 m Z (Exemplo) M9NWZ
Nenhum N (Exemplo) H7CN

^{*} Sensores de estado sólido marcados com *O* são produzidos após o recebimento do pedido.
* Os sensores magnéticos D-A9I□AMBI□I□/A7□I□A/A80I□/F7□I□A/I□I□ ão ervitados juntos (não montados). (No entanto, quando os tipos D-A9□□/M9□□□ forem selecionados, somente os suportes de montagem do sensor magnético serão montados anties do envio.)

^{*} Quando os tipos D-A9 🗆 M9 🗆 🗅 forem montados em um trilho, peça os suportes de montagem do sensor magnético separadamente. Consulte a página 144 para obter detalhes.

Cilindro de ar: Tipo de haste não rotativa Dupla ação, Haste simples

Série CJ2K

Um cilindro em que a haste não gira por causa do formato da haste hexagonal.

Símbolo

Dupla ação, haste simples, amortecedor de borracha

Amortecimento pneumático

Localização da porta no cabeçote traseiro

Perpendicular ao eixo do cilindro ou em linha com o eixo do cilindro disponível para o modelo básico.

Especificaç encomenda (Para obter de (Para obter de

Especificações produzidas sob encomenda

(Para obter detalhes, consulte as páginas 1675 a 1818).

	1070 a 1010).
Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC3	Localização especial da porta
-XC9	Cilindro de curso ajustável/Retração ajustável
-XC10	Cilindro de curso duplo/Tipo de haste passante
-XC22	Vedações de borracha de flúor
-XC51	Com bico de mangueira

Especificações

Diâmetro (mm)	10	16				
Ação	Dupla ação, l	Haste simples				
Fluido	Д	\r				
Pressão de teste	1 N	/IPa				
Pressão máxima de trabalho	0,7 1	MPa				
Pressão mínima de trabalho	0,06	MPa				
Temperatura ambiente e do fluido	Sem sensor magnético: -10°C a 70°C,	Com sensor magnético: -10°C a 60°C ⁴				
Amortecedor	Amorteciment	to de borracha				
Lubrificação	Não requer (disp	ensa lubrificação)				
Tolerância de comprimento do curso	+1	1,0				
Precisão antigiro da haste	±1,5°	±1°				
Velocidade do pistão	50 a 750 mm/s					
Energia cinética admissível	0,035 J 0,090 J					
* Com congolamento						

^{*} Sem congelament

Curso padrão

Curso paur	aO (m	nm
Diâmetro (mm)	Curso padrão	
10	15, 30, 45, 60, 75, 100, 125, 150	
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200	

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Modelo de montagem e acessório/Para obter detalhes, consulte a página 71.

	· · · · · · · · · · · · · · · · · · ·			,	13
	Modelo de montagem	Modelo básico	Modelo pé axial	Modelo de flange dianteira	Modelo de * fixação oscilante traseira fêmea
ento	Porca de montagem	•	•	•	_
Equipamento padrão	Porca da haste	•	•	•	•
퓹	Pino da fixação oscilante	_	_	_	•
la	Junta articulada simples	•	•	•	•
Opcional	Garfo *	•	•	•	•
ŏ	Suporte em T	_	ı	_	•

O pino e o anel retentor são enviados junto com a fixação oscilante traseira fêmea e a junta articulada dupla.

Ref. do suporte de montagem

a		
Suporte de	Diâmet	ro (mm)
montagem	10	16
Suporte tipo pé	CJ-L016B	CJK-L016B
Suporte do flange	CJ-F016B	CJK-F016B
Suporte em T *	CJ-T010B	CJ-T016B

^{*} O suporte em T é usado com fixação oscilante traseira fêmea (D).

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

CJ1

001

CJ2

CM2 -Z

СМЗ

CG1 -Z

CG1

CG3

MB MB1

CA2 -Z

CS1

CS2

Technical data

Precauções específicas do produto

Leia antes do manuseio.

Consulte o prefácio 57 para Instruções de Segurança e as páginas ■ 3 a 12 para Precauções com o sensor magnético e o atuador. -----

Cuidado ao manusear

∕.\Cuidado

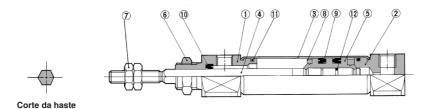
- 1. Durante a instalação, prenda o cabeçote dianteiro e aperte a porca de retenção ou o corpo do cabeçote dianteiro aplicando a força de aperto adequada.
 - Se o cabecote traseiro estiver preso ou apertado, a tampa pode girar levando a desvio.
- 2. Aperte os parafusos retentores de acordo com o torque de aperto apropriado dentro da faixa fornecida abaixo. ø10: 10,8 a 11,8 N·m, ø16: 20 a 21 N·m
- 3. No caso de um cilindro antigiro, não opere-o de forma que o torque rotacional seja aplicado à haste do pistão. Se o torque rotacional for aplicado, a guia não rotativa será deformada, afetando a precisão não rotativa.

T	ø10	ø16
Torque rotacional permitido (N·m)	0,02	0,04

- 4. Para aparafusar um suporte na parte roscada na extremidade da haste do pistão, certifique-se de retrair totalmente a haste do pistão e colocar uma chave de fenda nas partes planas da haste que sobressaem. Para apertar, tome as precauções necessárias para evitar que o torque de aperto seja aplicado à guia antigiro.
- Para remover e instalar o anel retentor para o pino da articulação ou o pino da fixação oscilante, use uma pinça adequada (ferramenta para instalar um anel retentor tipo C). Em particular, use pinças ultrapequenas para remover e instalar o anel retentor no cilindro de ø10.

6. No caso do modelo de montagem em trilho do sensor magnético, não remova o trilho que está montado. Como os parafusos retentores se estendem no cilindro, isso pode levar a um vazamento de ar.

0	000	
г	COU	

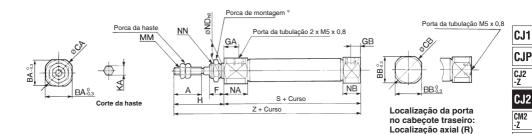

. 000			(9)
	Diâmetro (mm)	10	16
Peso básico	*	21	45
Peso adicio	nal por cada 15 mm de curso	4	6,5
Peso do	Modelo pé axial	20	20
suporte de	Modelo de flange dianteira	15	15
montagem	Modelo de fixação oscilante traseira fêmea (com pino) *	4	10

- * A porca de montagem e a porca da haste estão incluídas no peso básico.
- ** A porca de montagem não está fixada ao modelo de fixação oscilante traseira fêmea, portanto, o peso da porca de montagem já foi subtraído. Cálculo: (Exemplo) CJ2KL10-45
 - Peso básico ------ 21 (ø10)
 - Peso adicional ------ 4/15 curso Curso do cilindro ------ Curso 45

 - Peso do suporte de montagem ······ 20 (Modelo de pé axial)

21 + 4/15 x 45 + 20 = 53 g

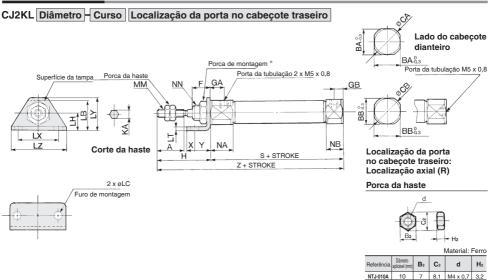
Construção (Não é possível desmontar)


Lista de peças

Nº	Descrição	Material	Nota		
1	Cabeçote dianteiro	Liga de alumínio	Anodizado		
2	Cabeçote traseiro	Liga de alumínio	Anodizado		
3	Tubo do cilindro	Aço inoxidável			
4	Haste do pistão	Aço inoxidável			
5	Pistão	Liga de alumínio	ø10, ø16		
6	Porca de montagem	Latão	Revestido com níquel		

Nº	Descrição	Material	Nota
7	Porca da haste	Aço laminado	Zinco cromado
8	Amortecedor	Uretano	
9	Vedação do pistão	NBR	
10	Vedação da haste	NBR	
11	Gaxeta da camisa	NBR	
12	Gaxeta do pistão	NBR	

Modelo básico (B)


CJ2KB Diâmetro - Curso Localização da porta no cabeçote traseiro

* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Table and the great of the state of the stat												(*******)					
0,000	Diâmetro (mi	n) A	BA	BB	CA	СВ	F	GA	GB	Н	KA	MM	NA	NB	NDh8	NN	S	Z
40 1- 1- 1- 1- 1- 1- 1- 1	10	15	15		17	14	8	8	5	28	4,2	M4 x 0,7	12,5	9,5	10 _0,022	M10 x 1,0	46	74
16 15 18,3 18,3 20 20 8 8 5 28 5,2 M5 x 0,8 12,5 9,5 12 _{-0.027} M12 x 1,0 47	16	15	18,3	18,3	20	20	8	8	5	28	5,2	M5 x 0,8	12,5	9,5	12 -0,027	M12 x 1,0	47	75

Modelo pé axial (L)

	 Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16) 										(mm)														
Diâmetro (mm)	Α	BA	ВВ	CA	СВ	F	GA	GB	Н	KA	LB	LC	LH	LT	LX	LY	LZ	MM	NA	NB	NN	Х	Υ	S	Z
10	15	15	12	17	14	8	8	5	28	4,2	21,5	5,5	14	2,3	33	25	42	M4 x 0,7	12,5	9,5	M10 x 1,0	6	9	46	74
16	15	18.3	183	20	20	8	8	5	28	5.2	23	5.5	14	23	33	25	42	M5 v 0.8	12.5	9.5	M12 v 1 0	6	a	47	75

D-□ -X□ Technical

CM2

СМЗ CG1 CG1 CG3

MB

-Z MB

MB1

CA2

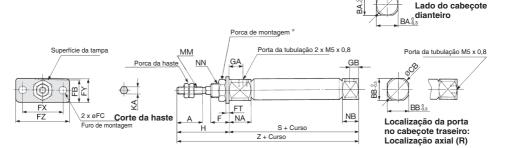
CA2 CS₁

CS2

SMC

91

NTJ-010A

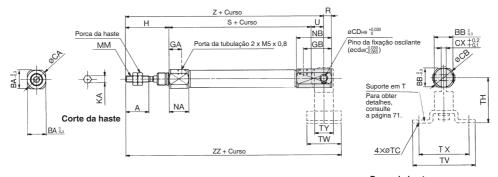

10 NTJ-015A

8 9,2 M5 x 0,8 4

Série CJ2K

Modelo de flange dianteiro (F)

CJ2KF Diâmetro - Curso Localização da porta no cabeçote traseiro



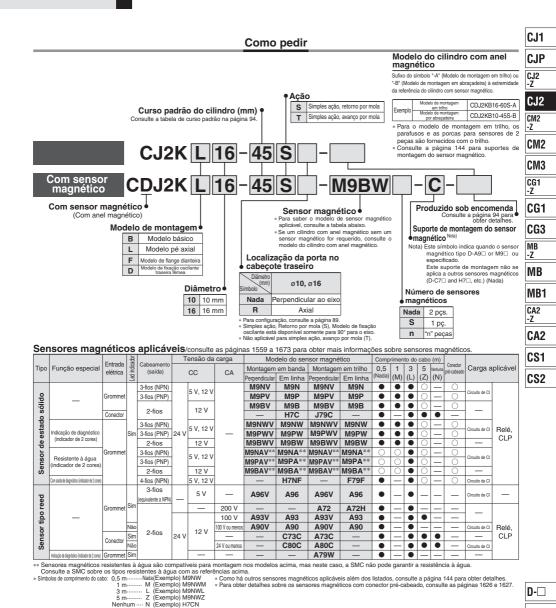
* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16)

(mm) Diâmetro (mm) BA BB CA CB F FB FC FT FX FY FZ GA GB H KA MM NA NB Z 2,3 10 33 20 28 4,2 M4 x 0,7 12,5 9,5 M10 x 1,0 46 12 5,5 42 8 5 74 16 5,2 M5 x 0,8 12,5 9,5 M12 x 1,0 47 15 18,3 18,3 20 20 28 75

Modelo de fixação oscilante traseira fêmea (D)

CJ2KD Diâmetro - Curso

Porca da haste


* O pino de fixação oscilante e o anel retentor são enviados juntos.

				Material:	Ferro
Referência	Diámetro aplicável (mm)	B ₂	C ₂	d	H ₂
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

Diâmetro (mm)	Α	BA	BB	CA	СВ	CD(cd)	CX	GA	GB	Н	KA	MM	NA	NB	R	S	U	Z	ZZ
10	15	15	12	17	14	3,3	3,2	8	18	28	4,2	M4 x 0,7	12,5	22,5	5	46	8	82	93
16	15	18,3	18,3	20	20	5	6,5	8	23	28	5,2	M5 x 0,8	12,5	27,5	8	47	10	85	99

Dimensões do suporte em T (mm)											
Diâmetro (mm)	TC	TH	TV	TW	TX	TY					
10	4,5	29	40	22	32	12					
16	5,5	35	48	28	38	16					
92											

Cilindro de ar: Tipo de haste não rotativa Simples ação, retorno/avanço por mola

* Sensores de estado sólido marcados com "O" são produzidos após o recebimento do pedido.

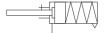
* Os sensores magnéticos D-A9\\(\text{MOD}\) \(\t

selecionados, somente os suportes de montagem do sensor magnético serão montados antes do envio.)

-X□

Technical

Um cilindro em que a haste não gira por causa do formato da haste hexagonal.



Símbolo

Simples ação, Retorno por mola, Amortecedor de borracha

Simples ação, Avanço por mola, Amortecedor de borracha

Especificações produzidas sob encomenda (Para obter detalhes, consulte as páginas 1675 e 1818).

Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC51	Com bico de mangueira

⚠ Precauções

Leia antes do manuseio.

Consulte o prefácio 57 para Instruções de Segurança e as páginas 3 a 12 para Precauções com o sensor magnético e o atuador.

Especificações

-1							
Diâmetro (mm)	10	16					
Ação	Simples ação, Retorno por mola/Simples ação, Avanço por mo						
Fluido	Ar						
Pressão de teste	1 MPa						
Pressão máxima de trabalho	0,7 MPa						
Pressão mínima de trabalho	0,15 MPa						
Temperatura ambiente e do fluido	Sem sensor magnético: -10°C a 70°C, Com sensor magnético: -10°C a 60°L						
Amortecedor	Amortecimento de borracha (padrão)						
Lubrificação	Não requer (dispensa lubrificação)						
Tolerância de comprimento do curso	+1	i,0)					
Precisão antigiro da haste	±1,5° ±1°						
Velocidade do pistão	50 a 750 mm/s						
Energia cinética admissível	0,035 J	0,090 J					

^{*} Sem congelamento

Curso padrão

- u		
Diâmetro	Curso padrão	
10	15, 30, 45, 60	
16	15, 30, 45, 60, 75, 100, 125, 150	

* A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

(mm) Força de reação da mola

Diâmetro	Força de reação da mola (N)		
(mm)	Primário	Secundário	
10	3,53	6,86	
16	6,86	14,2	

Mola com carga de Mola com carga de

Quando a mola é aiustada no cilindro Quando a mola é contraída aplicando ar

Modelo de montagem e acessório/

Para obter detalhes, consulte a página 64.

Montado no produto.
 Peça separadamente.

(N)

Montagem		Modelo básico	Modelo pé axial	Modelo de flange dianteira	Modelo de * fixação oscilante traseira fêmea
ento	Porca de montagem	•	•	•	_
pam	Porca da haste	•	•	•	•
Equipamento padrão	Pino da fixação oscilante	_	_	_	•
Opcional	Junta articulada simples	0	0	0	0
	Garfo *	0	0	0	0
ğ	Suporte em T	_	ı	_	0

^{*} O pino e o anel retentor são enviados junto com a fixação oscilante traseira fêmea e a junta articulada dupla.

Ref. do suporte de montagem

Suporte de montagem	Diâmetro (mm)					
	10	16				
Suporte tipo pé	CJ-L016B	CJK-L016B				
Suporte do flange	CJ-F016B	CJK-F016B				
Suporte em T *	CJ-T010B	CJ-T016B				

^{*} O suporte em T é usado com fixação oscilante traseira fêmea (D).

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

Cilindro de ar: Tipo de haste não rotativa Simples ação, retorno/avanço por mola

Série CJ2K

CJ1 CJP CJ2 -Z CJ2

CM2

СМЗ

CG1 -Z

CG1

CG3

MB -Z

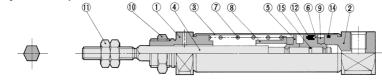
MB1
CA2
-Z
CA2

CS1

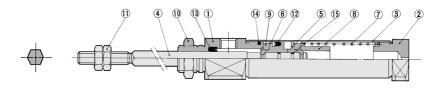
CS2

Peso/Retorno por mola, (): Avanço por mola

	Diâmetro (mm)	10	16
	Curso 15	26 (26)	58 (59)
	Curso 30	33 (32)	75 (75)
	Curso 45	42 (41)	97 (95)
Peso	Curso 60	51 (49)	119 (116)
básico *	Curso 75	_	140 (135)
	Curso 100	_	183 (173)
	Curso 125	_	219 (207)
	Curso 150	_	245 (231)
Peso do	Modelo pé axial	20	20
suporte de	Modelo de flange dianteira	15	15
montagem	Modelo de fixação oscilante traseira fêmea * (com pino)	4	10


- * A porca de montagem e a porca da haste estão incluídas no peso básico.

 ** A porca de montagem não está fixada ao modelo de fixação oscilante traseira fémea, portanto, o peso da porca de montagem já foi subtraído.


 Cálculo: (Exemplo) CJZKL10-45S
 - Peso básico------------------42 (curso ø10-45)
 - Peso do suporte de montagem ·····20 (Modelo de pé axial)
 42 + 20 = 62 g

Construção (Não é possível desmontar)

Simples ação, retorno por mola

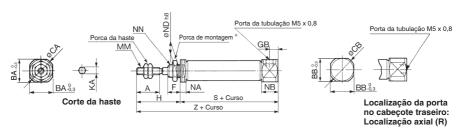
Simples ação, avanço por mola

Lista de peças

Nº	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4	Haste do pistão	Aço inoxidável	
5	Pistão A	Liga de alumínio	ø10, ø16
6	Pistão B	Liga de alumínio	ø10, ø16
7	Mola de retorno	Aço	Zinco cromado
8	Assento da mola	Latão	

Nº	Descrição	Material	Nota
9	Amortecedor	Uretano	
10	Porca de montagem	Latão	Revestido com níquel
11	Porca da haste	Aço laminado	Zinco cromado
12	Vedação do pistão	NBR	
13	Vedação da haste	NBR	
14	Gaxeta da camisa	NBR	
15	Gaxeta do pistão	NBR	

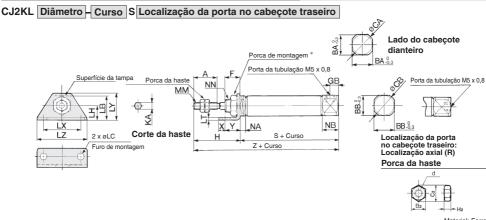
D-□ -X□


Technical data

Série CJ2K

Simples ação, Retorno por mola: Modelo básico (B)

CJ2KB Diâmetro - Curso S Localização da porta no cabeçote traseiro


* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16) (mm)

Diâmetro	Α	BA	BB	CA	СВ	F	GB	Н	KA	MM	NA	NB	NDh8	NN
10	15	15	12	17	14	8	5	28	4,2	M4 x 0,7	5,5	9,5	10 -0,022	M10 x 1,0
16	15	18,3	18,3	20	20	8	5	28	5,2	M5 x 0,8	5,5	9,5	12 0	M12 x 1,0

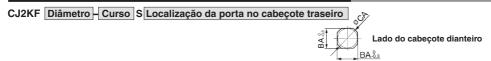
Dimensões por curso

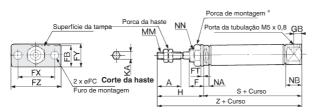
Símbolo Diámetro Cu-					3							- 2	Z			
(mm)	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	45,5	53	65	77	-	-	-	-	73,5	81	93	105	-	-	-	_
16	45,5	54	66	78	84	108	126	138	73,5	82	94	106	112	136	154	166

Simples ação, Retorno por mola: Modelo de pé axial (L)

			M	laterial: I	erro
Referência	Diâmetro aplicável (mm)	B ₂	C ₂	d	H2
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9.2	M5 x 0.8	4

* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16)


 Consulte a pág 	gina 7	1 para	obter	detal	hes da	a porc	a de n	nonta	gem. (SNJ-0)16B p	ara ø	10, SN	NKJ-0	16B pa	ara ø1	6)					(mm)
Diâmetro	Α	BA	BB	CA	СВ	F	GB	Н	KA	LB	LC	LH	LT	LX	LY	LZ	MM	NA	NB	NN	Х	Υ
10	15	15	12	17	14	8	5	28	4,2	21,5	5,5	14	2,3	33	25	42	M4 x 0,7	5,5	9,5	M10 x 1,0	6	9
16	15	18,3	18,3	20	20	8	5	28	5,2	23	5,5	14	2,3	33	25	42	M5 x 0,8	5,5	9,5	M12 x 1,0	6	9

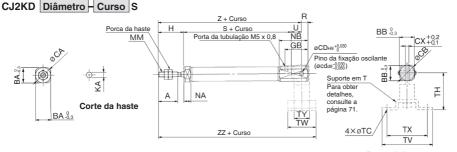

Dimensões por curso

Simbolo				S							- 2	Z				
Diâmetro Curso (mm)	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	45,5	53	65	77	-	-	-	-	73,5	81	93	105	-	-	-	_
16	45,5	54	66	78	84	108	126	138	73,5	82	94	106	112	136	154	166

Simples ação, Retorno por mola: Modelo de flange dianteira (F)

Porta da tubulação M5 x 0,8

Localização da porta no cabeçote traseiro: Localização axial (R)


* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16) (mm)

Diâmetro	Α	BA	BB	CA	СВ	F	FB	FC	FT	FX	FY	FZ	GB	Н	KA	MM	NA	NB	NN
10	15	15	12	17	14	8	17,5	5,5	2,3	33	20	42	5	28	4,2	M4 x 0,7	5,5	9,5	M10 x 1,0
16	15	18,3	18,3	20	20	8	19	5,5	2,3	33	20	42	5	28	5,2	M5 x 0,8	5,5	9,5	M12 x 1,0

Dimensões por curso

Símbolo					3							- :	Z			
Diâmetro Curso (mm)	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	45,5	53	65	77	-	-	-	-	73,5	81	93	105	-	-	-	
16	45,5	54	66	78	84	108	126	138	73,5	82	94	106	112	136	154	166

Simples ação, Retorno por mola: Modelo de fixação oscilante traseira fêmea (D)

Porca da haste

* O pino de fi	ixação oscilante	e o anel retentor	são enviados juntos.
----------------	------------------	-------------------	----------------------

	-														(mm)
Diâmetro	Α	BA	BB	CA	СВ	(cd)	СХ	GB	Н	KA	MM	NA	NB	R	U
10	15	12	12	14	14	3,3	3,2	18	20	4,2	M4 x 0,7	5,5	22,5	5	8
16	15	18,3	18,3	20	20	5	6,5	23	20	5,2	M5 x 0,8	5,5	27,5	8	10

	⊢	-	-	 	Ferro
Referência	Diâmetro aplicável (mm)	B ₂	C ₂	d	H ₂
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

L	Jimensoes	; po	r cu	rso																					(mm)
1	Símbolo Diámetro Crus				;	s							- 2	Z							Z	Z			
		5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
	10	45,5	53	65	77	-	-	-	-	73,5	81	93	105	-	-	-	-	84,5	92	104	116	-	-	-	
	16	45,5	54	66	78	84	108	126	138	75,5	84	96	108	114	138	156	168	89,5	98	110	122	128	152	170	182

Dimensõ	es c	do s	sup	ort	e ei	m T
Diâmetro (mm)	тс	TH	T۷	TW	ΤX	ΤY
				22		
16	5,5	35	48	28	38	16

SMC

D-□

Technical

CJ2 CM2 -Z

CJ1

CJP

CJ2 -Z

CM2

GIVIZ

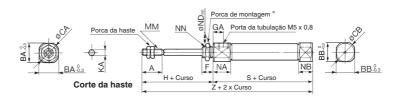
CM3

-z CG1

CG3

MB -Z

MB1

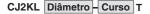

CA2 -Z

CS1

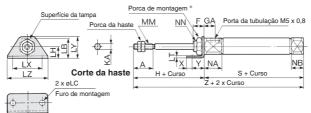
Série CJ2K

Simples ação, Avanço por mola: Modelo básico (B)

CJ2KB Diâmetro - Curso T


* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16) (mm)

Diâmetro	Α	BA	BB	CA	СВ	F	GA	Н	KA	MM	NA	NB	NDh8	NN
10	15	15	12	17	14	8	8	28	4,2	M4 x 0,7	12,5	5,5	10_0,022	M10 x 1,0
16	15	18,3	18,3	20	20	8	8	28	5,2	M5 x 0,8	12,5	5,5	12_0,027	M12 x 1,0


Dimensões por curso

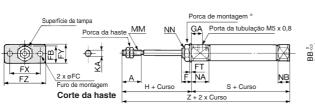
Símbolo Diâmetro Cu					3							- 7	Z			
(mm)	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	48,5	56	68	80	-	-	-	-	76,5	84	96	108	-	-	-	-
16	48,5	57	69	81	87	111	129	141	76,5	85	97	109	115	139	157	169

Simples ação, Avanço por mola: Modelo de pé axial (T)

	- 02	-	-	 H₂ Material:	Ferro
Referência	Diâmetro aplicável (mm)	B ₂	C ₂	d	H2
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16) (n

Diâmetro	Α	BA	BB	CA	СВ	F	GA	Н	KA	LB	LC	LH	LT	LX	LY	LZ	MM	NA	NB	NN	Х	Υ
10	15	15	12	17	14	8	8	28	4,2	21,5	5,5	14	2,3	33	25	42	M4 x 0,7	12,5	5,5	M10 x 1,0	6	9
16	15	18,3	18,3	20	20	8	8	28	5,2	23	5,5	14	2,3	33	25	42	M5 x 0,8	12,5	5,5	M12 x 1,0	6	9

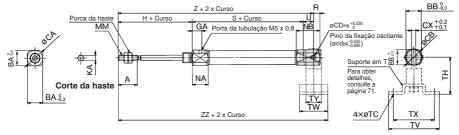

Dimensões por curso

Símbolo Diámetro Cura				;	S							2	<u> </u>			
(mm)	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	48,5	56	68	80	-	-	-	-	76,5	84	96	108	-	-	-	-
16	48,5	57	69	81	87	111	129	141	76,5	85	97	109	115	139	157	169

Simples ação, Avanço por mola: Modelo de flange dianteira (F)

CJ2KF Diâmetro - Curso T

* Consulte a página 71 para obter detalhes da porca de montagem. (SNJ-016B para ø10, SNKJ-016B para ø16) (mn


Diâmetro	Α	ВА	ВВ	CA	СВ	F	FB	FC	FT	FX	FY	FZ	GA	Н	KA	MM	NA	NB	NN
10	15	15	12	17	14	8	17,5	5,5	2,3	33	20	42	8	28	4,2	M4 x 0,7	12,5	5,5	M10 x 1,0
16	15	18,3	18,3	20	20	8	19	5,5	2,3	33	20	42	8	28	5,2	M5 x 0,8	12,5	5,5	M12 x 1,0

Dimensões por curso

Símbolo Diâmetro Cur					3							- 2	Z			
(mm) Curso	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	48,5	56	68	80	-	-	-	-	76,5	84	96	108	-	-	-	
16	48,5	57	69	81	87	111	129	141	76,5	85	97	109	115	139	157	169

Simples ação, Avanço por mola/Modelo de fixação oscilante traseira fêmea (D)

CJ2KD Diâmetro - Curso T

Porca da haste

* O pino de fixa	ção o	scilant	eeo	anel re	etento	r são	envia	dos jui	ntos.						(mm)
Diâmetro	Α	BA	BB	CA	СВ	CD (cd)	СХ	GA	Н	KA	MM	NA	NB	R	U
10	15	15	12	17	14	3,3	3,2	8	28	4,2	M4 x 0,7	12,5	18,5	5	8
16	15	18,3	18,3	20	20	5	6,5	8	28	5,2	M5 x 0,8	12,5	23,5	8	10

	- DZ		- -	⊢H₂ Material:	Ferro
Referência	Diámetro aplicável (mm)	B2	C ₂	d	H2
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

Dime	Dimensões por curso (mm)																								
Diâmetro (mm)	Simbolo	S						Z						ZZ											
	Curso	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
	10	48,5	56	68	80	-	-	-	-	84,5	92	104	116	-	-	-	-	95,5	103	115	127	-	-	-	-
	16	48.5	57	69	81	87	111	129	141	86.5	95	107	119	125	149	167	179	100.5	109	121	133	139	163	181	193

Dimensões do suporte em T										
Diâmetro (mm)	TC	TH	T۷	TW	ΤX	ΤY				
				22						
16	5,5	35	48	28	38	16				

20

CJ1

CJP

CJ2

CM2 -Z

CM2

CM3

CG1

CG3

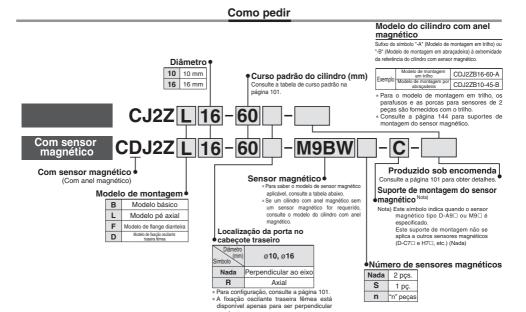
MB -Z

MB

MB1

CA2 -Z

CA2 CS1


CS2

D-□

-X

Cilindro de ar: Tipo de válvula reguladora de vazão integrada Dupla ação, Haste simples

Série CJ2Z

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		Entrada	ador	Cabeamento	Т	ensão da	carga	Mod	delo do sen	sor magné	tico	Comp	rimen	to do	cabo	(m)			
Tipo	Função especial	elétrica	indicador	(saída)		СС	CA	Montagem	em banda	Montagen		0,5	1	3	5	Nenhuma	Conector pré-cabeado	Carga a	aplicáve
		Cictioa	P8	(ourus)		00	OA	Perpendicular	Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)	,		
				3-fios (NPN)		5 V. 12 V		M9NV	M9N	M9NV	M9N	•	•	•	0	_	0	Circuito de Cl	
용		Grommet		3-fios (PNP)		5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Ci	
sólido				0.6		12 V		M9BV	M9B	M9BV	M9B	•	•	•	0	_	0		
		Conector		2-fios		12 V		_	H7C	J79C	_	•	_	•	•	•	_		
estado				3-fios (NPN)		5 V, 12 V		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0	Circuito de CI	Dalá
est	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim	3-fios (PNP) 2-fios 3-fios (NPN) 3-fios (PNP) 2-fios	24 V	5 V, 12 V	_	M9PWV	M9PW	M9PWV	M9PW	•	• • • O —	0	Circuito de Ci	Relé, CLP			
de						12 V	1	M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0	_	CLF
	Resistente à água (indicador de 2 cores)					5 V. 12 V		M9NAV**	M9NA**	M9NAV**	M9NA**	0	0	•	0	_	0	Circuito de CI	
Sensor						5 V, 12 V		M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Ci]
Se						12 V		M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0	_	
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V	V	_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de Cl	
				3-fios		5 V		A96V	A96	A96V	A96			_				Circuito de CI	
reed				(equivalente a NPN)	_	- V		ASOV	ASO	ASOV	ASO			_				Circuito de Ci	
2		Grommet	Sim			_	200 V	_	_	A72 A	A72H	•	_	•	—	_	_		
tipo	_						100 V	A93V	A93	A93V	A93	•	_	•	•	_	_		
<u>.</u>			Não	2-fios		12 V	100 V ou menos	A90V	A90	A90V	A90	•	_	•	_	_	_	Circuito de CI	Relé,
Sensor		Conector	Sim	2-1108	24 V	12 V	_	_	C73C	A73C	_	•	_	•	•	•	_	_	CLP
Se		COLLECTOR	Não				24 V ou menos	_	C80C	A80C		•	_	•	•	•	_	Circuito de Cl	1
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_		A79W	_	•	_	•	_	_	_	_]

- Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água. Consulte a SMC sobre os tipos resistentes à água com as referências acima.
- * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes. páginas 1626 e 1627
- Nennum: N (сжелири) п/ON

 Sensores de estado sólido marcados com "o" são produzidos após o recebimento do pedido.

 Os ensores magnéticos D-A9□□/M9□□□/A7□□/A80□F7□□J/7□□ são enviados juntos (não montados). (No entanto, quando os tipos D-A9□□/M9□□□ forem selecionados, somente os suportes de montagem do sensor magnético será montados antes do envio.)

 Quando os tipos D-A9□□/M9□□□ forem montados em um trilho, peça os suportes de montagem do sensor magnético separadamente. Consulte a página 144 para obter detalhes.

Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as

Cilindro de ar com economia de espaco com tampa do cilindro integrado da válvula reguladora de vazão

Símbolo

Dupla ação, haste simples, amortecedor de borracha

Especificações produzidas sob encomenda

(Para obter detalhes, consulte as páginas 1675 e 1818).

Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC51	Com bico de mangueira

Consulte a página 64 antes do manuseio.

Especificações

Diâmetro (mm)	10	16				
Ação	Dupla ação, l	Haste simples				
Fluido	A	\r				
Pressão de teste	1 N	1Pa				
Pressão máxima de trabalho	0,7	MPa				
Pressão mínima de trabalho	0,06	MPa				
Temperatura ambiente e do fluido	Sem sensor magnético: –10°C a 70°C, Com sensor magnético: –10°C a 60°C*					
Amortecedor	Amortecimento de borracha					
Lubrificação	Não requer (disp	ensa lubrificação)				
Tolerância de comprimento do curso	+'	1,0				
Válvula reguladora de vazão	Integ	grado				
Velocidade do pistão	50 a 75	0 mm/s				
Energia cinética admissível	0,035 J 0,090 J					

^{*} Sem congelamento

Curso padrão

Diâmetro	Curso padrão
10	15, 30, 45, 60, 75, 100, 125, 150
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Modelo de montagem e acessório/

Para obter detalhes, consulte a página 71.

•···Montado no produto. O...Peça separadamente.

	Montagem	Modelo básico	Modelo pé axial	Modelo de flange dianteira	Modelo de * fixação oscilante traseira fêmea
ento o	Porca de montagem	•	•	•	_
Equipamento padrão	Porca da haste	•	•	•	•
Equi	Pino da fixação oscilante	_	_	_	•
la	Junta articulada simples	0	0	0	0
Opcional	Garfo *	0	0	0	0
õ	Suporte em T	_	_	_	0

^{*} O pino e o anel retentor são enviados junto com a fixação oscilante traseira fêmea e a junta articulada dupla.

Ref. do suporte de montagem

	nei. uu su	porte de montagem							
	Suporte de	Diâmetro (mm)							
	montagem	10	16						
	Suporte tipo pé	CJ-L010B	CJ-L016B						
I	Suporte do flange	CJ-F010B	CJ-F016B						
	Suporte em T *	CJ-T010B	CJ-T016B						

^{*} O suporte em T é usado com fixação oscilante traseira fêmea (D).

Localização da porta no cabeçote traseiro

Perpendicular ao eixo do cilindro ou em linha com o eixo do cilindro disponível para o modelo básico.

Perpendicular Axial

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos

- · Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- · Intervalo de operação
- Referência do suporte de montagem do sensor

D-□

-X□

Technical

data

CJ1 **CJP**

CJ₂ CM2

CM2

СМЗ CG1

-Z CG₁

CG3

MB MB

MR1 CA2

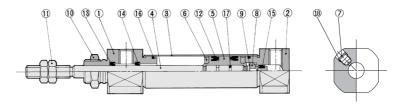
CA2

CS₁

CS₂

Série CJ2Z

Peso

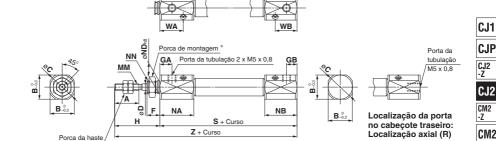

1 630			(9)		
	Diâmetro (mm)				
Peso básico	Peso básico *				
Peso adicio	4	6,5			
Peso do	Modelo pé axial	8	20		
suporte de	Modelo de flange dianteira	5	15		
montagem	Modelo de fixação oscilante traseira fêmea * (com pino)	4	10		

- * A porca de montagem e a porca da haste estão incluídas no peso
- ** A porca de montagem não está fixada ao modelo de fixação oscilante traseira fêmea, portanto, o peso da porca de montagem já foi

- Cálculo: (Exemplo) CJ2ZL10-45

 Peso básico ------ 37 (Ø10)
 - Peso adicional ------ 4/15 curso
 - Curso do cilindro ----- 45 curso
 - Peso do suporte de montagem ······· 8 (Modelo de pé axial)
 37 + 4/15 x 45 + 8 = 57 g

Construção (Não é possível desmontar)

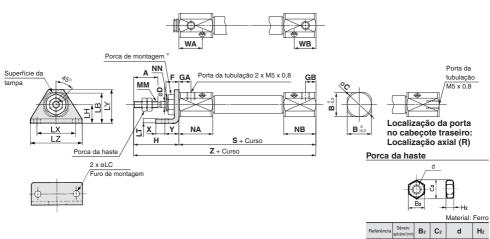

Lista de peças

N°	Descrição	Material	Nota		
1	Cabeçote dianteiro	Liga de alumínio	Anodizado		
2	Cabeçote traseiro	Liga de alumínio	Anodizado		
3	Tubo do cilindro	Aço inoxidável			
4	Haste do pistão	Aço inoxidável			
5	Pistão	Liga de alumínio	ø10, ø16		
6	Amortecedor	Uretano			
7	Agulha da válvula reguladora de vazão	Aço inoxidável			
8	Luva de vedação	Latão			
9	Anel retentor	Aço-carbono	Revestido de fosfato		

No.	Descrição	Material	Nota
10	Porca de montagem	Latão	Revestido com níquel
11	Porca da haste	Aço laminado	Zinco cromado
12	Vedação do pistão	NBR	
13	Vedação da haste	NBR	
14	Vedação de retenção A	NBR	
15	Vedação de retenção B	NBR	
16	Gaxeta da camisa	NBR	
17	Gaxeta do pistão	NBR	
18	Vedação da agulha	NBR	

Modelo básico (B)

CJ2ZB Diâmetro - Curso Localização da porta no cabeçote traseiro



* Para detalhes da porca de montagem, consulte a página 71.

1 ara astantes da peroa de montagem, concano a pagina 7 m												
Diâmetro A B C D F GA GB H	MM NA	NB NDh8	NN	WA	WB	S	Z					
10 15 15 17 4 8 7,5 6,5 28	M4 x 0,7 21	18 8 0 0 0	M8 x 1,0	14,5	13,5	63	91					
16 15 18,3 20 5 8 7,5 6,5 28	M5 x 0,8 21	18 10 -0,022	M10 x 1,0	14,5	13,5	64	92					

Modelo pé axial (L)

CJ2ZL Diâmetro - Curso Localização da porta no cabeçote traseiro

* Para detalhes da porca de montagem, consulte a página 71.

	(m															(mm)									
Diâmetro	Α	В	С	D	F	GA	GB	Н	LB	LC	LH	LT	LX	LY	LZ	MM	NA	NB	NN	S	WA	WB	Х	Υ	Z
10	15	15	17	4	8	7,5	6,5	28	16,5	4,5	9	1,6	24	16,5	32	M4 x 0,7	21	18	M8 x 1,0	63	14,5	13,5	5	7	91
16	15	18,3	20	5	8	7,5	6,5	28	23	5,5	14	2,3	33	25	42	M5 x 0,8	21	18	M10 x 1,0	64	14,5	13,5	6	9	92

D- -X -X - Technical data

SMC

103

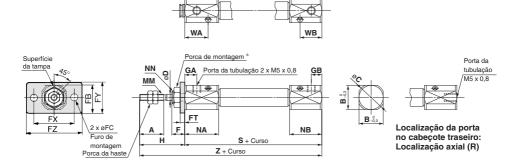
CM3

CG1 -Z

CG1

MB -Z

MB1

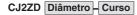

CA2 -Z

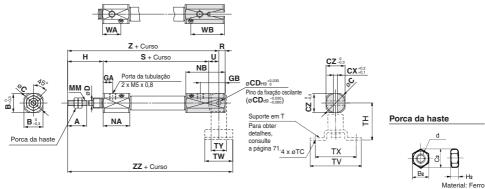
CS1 CS2

Série CJ2Z

Modelo de flange dianteiro (F)

CJ2ZF Diâmetro - Curso Localização da porta no cabeçote traseiro




* Para detalhes da porca de montagem, consulte a página 71.

(mm)

Diâmetro	Α	В	С	D	F	FB	FC	FT	FX	FY	FZ	GA	GB	Н	MM	NA	NB	NN	WA	WB	S	Z
10	15	15	17	4	8	14,5	4,5	1,6	24	14	32	7,5	6,5	28	M4 x 0,7	21	18	M8 x 1,0	14,5	13,5	63	91
16	15	18,3	20	5	8	19	5,5	2,3	33	20	42	7,5	6,5	28	M5 x 0,8	21	18	M10 x 1,0	14,5	13,5	64	92

Modelo de fixação oscilante traseira fêmea (D)

Referência	Diámetro aplicável (mm)	B ₂	C ₂	d	H2
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

* O pino de fixação oscilante e o anel retentor são enviados juntos. Diâmetro Α В С CX CZ D GA GB 3,3

3.2 15

					(mm)
S	U	WA	WB	Z	ZZ
63	8	14,5	26,5	99	110
64	10	14,5	31,5	102	116

Dimensões do suporte em T (mm)									
Diâmetro	TC	TH	TV	TW	TX	TY			
10	4,5	29	40	22	32	12			
16	5.5	35	48	28	38	16			

Н

28

28

19,5

24,5

7,5

4

MM

M4 x 0.7

M5 x 0,8

NA NB R

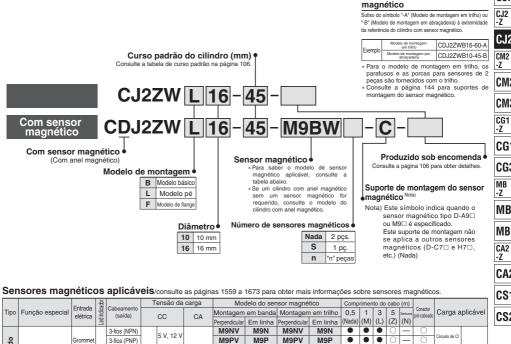
21

31 5

36 8

10

16


15 15 17

15 18,3 20 5 6,5 18,3 5 7,5

Cilindro de ar: Tipo de válvula reguladora de vazão integrada Dupla ação, Haste passante

Série CJ2ZW ø10, ø16

Como pedir

0		Conector						_	H/C	J/9C	_	•	_	•	•	_	_			
tado			1	3-fios (NPN)	1	5 V. 12 V		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0	Circuito de CI	D-14	
est	Indicação de diagnóstico		Sim	3-fios (PNP)	24 V	5 V, 12 V	_	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuito de Ci	Relé, CLP	
ge	(indicador de 2 cores)			2-fios		12 V		M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	-	0	_	CLF	
ō		Grommet		3-fios (NPN)	1	5 V. 12 V		M9NAV**	M9NA**	M9NAV**	M9NA**	0	0	•	0	_	0	Circuito de CI		
S	Resistente à água (indicador de 2 cores)			3-fios (PNP)		5 V, 12 V		M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Ci		
Se	(maioador do 2 doreo)			2-fios		12 V		M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0	_		
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V		_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de CI		
				3-fios		5 V	_	A96V	A96	A96V	A96	•						Circuito de CI		
ed				(equivalente a NPN)	_	3 V		A90V	A90	A90V	A90		_	_	_	_		Circuito de Ci		

M9P

M9B

Δ93

A90

C73C

C80C

M9BV

A72

A93V

A90V

A73C

A80C

A79W

M9B

A72H

A93

A90

M9PV

Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água

A93V

A90V

 Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes. * Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627

Nenhum ··· N (Exemplo) H7CN

2-fios

Sim

Indicação de diagnóstico (indicador de 2 cores) | Grommet | Sim

24 V

3-fios (PNP)

12 V

Gromme

Sensor tipo

* Sensores de estado sólido marcados com "O" são produzidos após o recebimento do pedido.
* Os sensores magnéticos D-A9\(\sum \) M9\(\sum \) (No entanto, quando os tipos D-A9\(\sum \) M9\(\sum \) (From the forem

selecionados, somente os suportes de montagem do sensor magnético serão montados antes do envio.)

* Quando os tipos D-A9□□M9□□□ forem montados em um trilho, peca os suportes de montagem do sensor magnético separadamente. Consulte a página 144 para obter detalhes

200 V

100 V

100 V ou m 12 V

24 V ou m

• •

> • •

> •

•

•

105

D-

-X□

Technical data

Relé,

CLP

CJ1

Modelo do cilindro com anel

CJP

CJ2

CJ2

CM2

CM₂

CM3

CG1 -Z

CG₁

CG3

MR -7

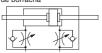
MB₁

CA2

CA₂

CS1

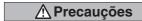
CS₂


Série CJ2ZW

Cilindro de ar com economia de espaço com tampa do cilindro integrado da válvula reguladora de vazão

Símbolo

Dupla ação, Haste passante, Amortecimento de borracha



Especificações produzidas sob encomenda

encomend
(Para obter de

(Para obter detalhes, consulte as páginas 1675 e 1818).

Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC51	Com bico de mangueira

Consulte a página 64 antes do manuseio.

Especificações

Diâmetro (mm)	10	16				
Ação	Dupla ação, Haste simples					
Fluido	A	\r				
Pressão de teste	1 N	1Pa				
Pressão máxima de trabalho	0,7	MPa				
Pressão mínima de trabalho	0,1	MPa				
Temperatura ambiente e do fluido	Sem sensor magnético: –10°C a 70°C, Com sensor magnético: –10°C a 60°C *					
Amortecedor	Amortecimento de borracha					
Lubrificação	Não requer (disp	ensa lubrificação)				
Tolerância de comprimento do curso	+1	.0				
Válvula reguladora de vazão	Integ	grado				
Velocidade do pistão	50 a 750 mm/s					
Energia cinética admissível	0,035 J 0,090 J					

^{*} Sem congelamento

Curso padrão									
Diâmetro	Curso padrão								
10	15, 30, 45, 60								
16	15, 30, 45, 60								

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Modelo de montagem e acessório/

Para obter detalhes, consulte a página 71.

Montado no produto.
 Peça separadamente.

	Montagem	Modelo básico	Modelo pé	Modelo de flange
Equipamento	Porca de montagem	•	•	•
padrão	Porca da haste	•	•	•
Opcional	Junta articulada simples	0	0	0
Орсіонаі	Garfo *	0	0	0

st O pino da articulação e o anel retentor são enviados junto com a junta articulada dupla.

Ref. do suporte de montagem

Suporte de montagem	Diâmetro (mm)								
Suporte de montagem	10	16							
Suporte tipo pé	CJ-L010B	CJ-L016B							
Suporte do flange	CJ-F010B	CJ-F016B							

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

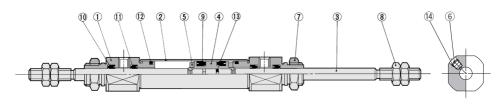
Cilindro de ar: Tipo de válvula reguladora de vazão integrada Dupla ação, Haste passante

Série CJ2ZW

Peso

Peso			(g)
Diâmetro	(mm)	10	16
Peso básico *		47	75
Peso adicional por cada	a 15 mm de curso	6	9
Peso do suporte	Modelo pé	16	40
de montagem	Modelo de flange	5	15

* A porta da haste é incluída no peso básico.


Cálculo: (Exemplo)

CJ2ZWL10-45

- · Peso básico·· ··50 (ø10) Peso adicional------6/15 curso
- Curso do cilindro-------·45 curso
- Peso do suporte de montagem······16 (Modelo de pé axial)

50 + 6/15 x 45 + 16 = 84 g

Construção (Não é possível desmontar)

Lista de peças

Nº	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Tubo do cilindro	Aço inoxidável	
3	Haste do pistão	Aço inoxidável	
4	Pistão	Liga de alumínio	ø10, ø16
5	Amortecedor	Uretano	
6	Agulha da válvula reguladora de vazão	Aço inoxidável	
7	Porca de montagem	Latão	Revestido com níquel

Nº	Descrição	Material	Nota
8	Porca da haste	Aço laminado	Zinco cromado
9	Vedação do pistão	NBR	
10	Vedação da haste	NBR	
11	Vedação de retenção	NBR	
12	Gaxeta da camisa	NBR	
13	Gaxeta do pistão	NBR	
14	Vedação da agulha	NBR	

CJ1

CJP

CJ2

CM2

CM2

CM3 CG1 -Z

CG1

CG3

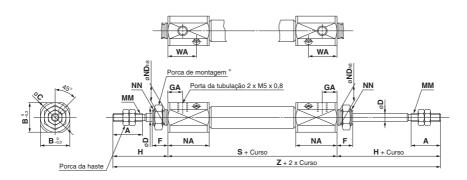
MB -Z MB

MB1 CA2

CA2

CS1 CS2

D-□ -X□


Technical

Série CJ2ZW

Modelo básico (B)

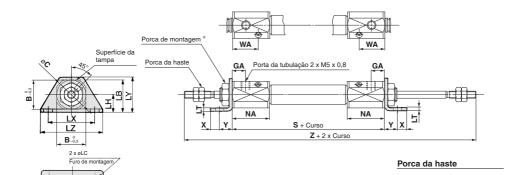
CJ2ZWB Diâmetro - Curso

* Para detalhes da porca de montagem, consulte a página 71.

* Para	Para detaines da porca de montagem, consulte a pagina 71. (mm)									
D	F	GA	Н	MM	NA	NDh8	NN	S	WA	Z
4	8	7,5	28	M4 x 0,7	21	8 0	M8 x 1,0	66	14,5	122
		7.5	00	ME 0.0	04	40.0	1440 4.0	07	445	400

Modelo tipo pé (L)

A B C


15 15 17

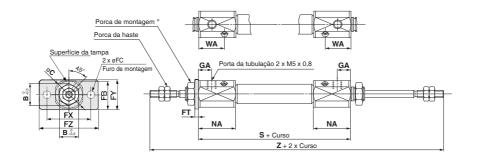
15 18,3 20

Diâmetro

16

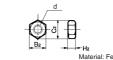
CJ2ZWL Diâmetro - Curso

* Para detalhes da porca de montagem, consulte a página 71.


											,					(111111)
Diâmetro	В	С	LB	LC	LH	LT	LX	LY	LZ	GA	NA	S	WA	Х	Υ	Z
10	15	17	16,5	4,5	9	1,6	24	16,5	32	7,5	21	66	14,5	5	7	122
16	18,3	20	23	5,5	14	2,3	33	25	42	7,5	21	67	14,5	6	9	123

				atona. i	0110
Referência	Dlámetro aplicável (mm)	B ₂	C ₂	d	H2
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

Modelo de flange (F)


CJ2ZWF Diâmetro - Curso

Para detalhes da norca de montagem, consulte a página 71.

					014100	aa poi	ou uo .	oag	0111, 00	nounto c	, pag	u	(mm)
Diâmetro	В	С	FB	FC	FT	FX	FY	FZ	GA	NA	S	WA	Z
10	15	17	14,5	4,5	1,6	24	14	32	7,5	21	66	14,5	122
16	18,3	20	19	5,5	2,3	33	20	42	7,5	21	67	14,5	123

				iviateriai.	rei
Referência	Diâmetro aplicável (mm)	B2	C ₂	d	H
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

CJ1

CJ2 -Z

CJ2 CM2

CM2

CM3 CG1 -Z

CG1

CG3

MB -Z

MB1

CA2 -Z

CS1

CS2

D-□ -X□

Technical data

Cilindro de ar: Tipo baixo atrito Dupla ação, Haste simples Série CJ2Q

Como pedir Modelo do cilindro com anel magnético Sufixo do símbolo "-A" (Modelo de montagem em trilho) ou "-B" (Modelo de montagem em abraçadeira) à extremidade da referência do cilindro com sensor magnético. CDJ2QB16-60-A Curso padrão do cilindro (mm) 9 Consulte a tabela de curso padrão na página 111 CDJ2QB10-45-B * Para o modelo de montagem em trilho, os parafusos e as porcas para sensores de 2 peças são fornecidos com o trilho. * Consulte a página 144 para suportes de montagem do sensor magnético. Com sensor **CDJ2Q L 16** M9BW magnético Produzido sob encomenda Com sensor magnético Consulte a página 111 para obter detalhes. (Com anel magnético) Sensor magnético Suporte de montagem do sensor * Para saber o modelo de sensor magnético Modelo de montagem • aplicável, consulte a tabela abaixo. * Se um cilindro com anel magnético sem um Modelo básico Nota) Este símbolo indica quando o sensor magnético for requerido, consulte o sensor magnético tipo D-A9□ ou M9□ é especificado. L Modelo pé axial modelo do cilindro com anel magnético. F Modelo de flange dianteira Este suporte de montagem não Localização da porta no Modelo de fixação oscilante traseira fêmea se aplica a outros sensores D cabeçoté traseiro magnéticos (D-C7□ and H7□, etc.) (Nada) Diâmetro • ø10, ø16 10 10 mm Símbolo Número de sensores magnéticos Perpendicular ao eixo 16 16 mm 2 pçs. R Axial 1 pc Para configuração, consulte a página 112. n "n" pecas A fixação oscilante traseira fêmea está disponível apenas para ser perpendicular

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		Catacada	ador	0.1	Т	ensão da	carga	Mo	delo do ser	sor magné	tico	Comp	rimen	to do	cabo	(m)					
Tipo	Função especial	Entrada elétrica	ed indicador	Cabeamento (saída)		CC	CA	Montagem	em banda	Montagem		0,5	1	3	5	Nenhuma	Conector pré-cabeado	Carga a	plicável		
		Cictioa	Led	(,,			C CA		Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)	,				
				3-fios (NPN)		5 V, 12 V		M9NV	M9N	M9NV	M9N	•	•	•	0	_	0	Circuito de Cl			
용	_	Grommet		3-fios (PNP)		3 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Ci			
sólido				0.0		12 V		M9BV	M9B	M9BV	M9B	•	•	•	0	_	0				
		Conector		2-fios		12 V		_	H7C	J79C	_	•	_	•	•	•	_				
estado			3-fios (NPN)		5 V, 12 V		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0	Circuito de Cl	Relé.			
est	Indicação de diagnóstico		Sim	3-fios (PNP)	24 V	5 V, 12 V	—	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuito de Ci	CLP		
ge	(indicador de 2 cores)			2-fios		12 V		M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0	_	CLI		
		Grommet		3-fios (NPN)		E V/ 10 V/				M9NAV**	M9NA**	M9NAV**	M9NA**	0	0	•	0	_	0	Circuito de Cl	
Sensor	Resistente à água (indicador de 2 cores)					3-fios (PNP)		5 V, 12 V		M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Ci	
S	(maioador do 2 dordo)			2-fios		12 V	12 V		M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0	_			
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V		_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de Cl			
reed				3-fios (equivalente a NPN)	_	5 V	_	A96V	A96	A96V	A96	•	_	•	_	_	_	Circuito de CI	_		
		Grommet	Sim			_	200 V	_	_	A72	A72H	•	_	•	_	_	_				
Sensor tipo	_						100 V	A93V	A93	A93V	A93	•	_	•	•	_	_	-			
ž			Não	- "		12 V	100 V ou menos	A90V	A90	A90V	A90	•	_	•	_	_	_	Circuito de Cl	Relé,		
ารต		^	Sim	2-fios	24 V	12 V		_	C73C	A73C	_	•	_	•	•	•	_	_	CLP		
Sel		Conector	Não				24 V ou menos	_	C80C	A80C	_	•	_	•	•	•	_	Circuito de Cl	1		
,,,,	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_	_	A79W	_	•	_	•	_	_	_	_	1		

- agnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água
- Consulte a SMC sobre os tipos resistentes à água com as referências acima
 * Símbolos de comorimento do cabo: 0.5 m........Nada(Exemplo) M9NW

 * Como há * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes
 - * Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627.
 - 1 m----- M (Exemplo) M9NWM 3 m----- L (Exemplo) M9NWL 5 m----- Z (Exemplo) M9NWZ

ø10, ø16

- * Sensores de estado sólido marcados com "\" são produzidos após o recebimento do pedido.

 * Os sensores magnéticos D-A9\(\sum M9\\ \sup \subseteq \subsete
- somente os suportes de montagem do sensor magnético serão montados antes do envio.)

 Quando os tipos D-A9\\[\sum M\) \\ \sum or montados em um trilho, peça os suportes de montagem do sensor magnético separadamente. Consulte a página 144 para obter detalhes.

Cilindro de ar: Tipo baixo atrito Dupla ação, Haste simples

Série CJ2Q

Projetado especialmente para manter a fricção do pistão no mínimo. Adequado para controle de pressão de contato que requer operação suave em baixas pressões.

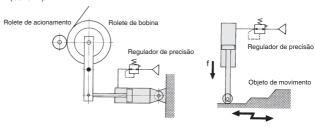
Baixa resistência ao deslizamento Pressão mínima de trabalho: 0,03 MPa

Símbolo

Dupla ação, haste simples, amortecedor de borracha

Especificações produzidas sob encomenda

(Para obter detalhes, consulte as páginas 1675 e 1818).


Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC51	Com bico de mangueira

Precauções

Consulte a página 64 antes do manuseio.

Exemplo de aplicação

O cilindro de baixo atrito é usado em combinação com o regulador de precisão (Série IR).

Especificações

Diâmetro (mm)	10 16					
Ação	Dupla ação, l	Haste simples				
Fluido	Α	ır				
Pressão de teste	1 N	1Pa				
Pressão máxima de trabalho	0,7 1	MPa				
Pressão mínima de trabalho	0,03 MPa					
Temperatura ambiente e do fluido	Sem sensor magnético: –10°C a 70°C, Com sensor magnético: –10°C a 60°C					
Amortecedor	Amortecimento de borracha					
Lubrificação	Não ap	olicável				
Tolerância de comprimento do curso	+1. 0	.0				
Velocidade do pistão	50 a 750 mm/s					
Energia cinética admissível	0,035 J 0,090 J					

^{*} Sem congelamento

Curso padrão

Diâmetro	Curso padrão
10	15, 30, 45, 60, 75, 100, 125, 150
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- · Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

CJ₁ **CJP** CJ₂

> CM2 CM2 СМЗ

CG1 CG1

> CG3 MB MB

MB1 CA2

CA2

CS₁ CS₂

D-□ -X□

Technical

Série CJ2Q

Modelo de montagem e acessório/ Para obter detalhes, consulte a página 71.

●···Montado no produto. ○···Peça separadamente

				. oga oopa	
	Montagem	Modelo básico	Modelo pé axial	Modelo de flange dianteira	Modelo de* fixação oscilante traseira fêmea
on to	Porca de montagem	•	•	•	_
Equipamento padrão	Porca da haste	•	•	•	•
Equi	Pino da fixação oscilante	_	_	_	•
<u>_</u>	Junta articulada simples	0	0	0	0
Opcional	Garfo *	0	0	0	0
ð	Suporte em T	_	_	_	0

^{*} O pino e o anel retentor são enviados junto com a fixação oscilante traseira fêmea e a junta articulada dupla

Ref. do suporte de montagem

Suporte de	Diâmet	ro (mm)
montagem	10	16
Suporte tipo pé	CJ-L010B	CJ-L016B
Suporte do flange	CJ-F010B	CJ-F016B
Suporte em T *	CJ-T010B	CJ-T016B

^{*} O suporte em T é usado com fixação oscilante traseira fêmea (D).

Peso			(g)
	Diâmetro (mm)	10	16
Peso bási	*	21	45
Peso adici	onal por cada 15 mm de curso	4	6,5
Peso do	Modelo pé axial	8	20
suporte de		5	15
montagem	Modelo de fixação oscilante traseira fêmea (com pino)	4	10

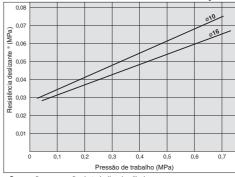
- A porca de montagem e a porca da haste estão incluídas no peso básico.
- ** A porca de montagem não está fixada ao modelo de fixação oscilante traseira fêmea, portanto, o peso da porca de montagem já foi subtraído.

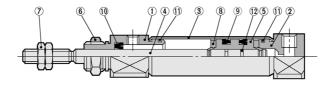
Cálculo: (Exemplo) CJ2QL10-45

- · Peso básico·· ····21 (ø10)
- Peso adicional------4/15 curso
- Curso do cilindro-------.....45 curso
- Peso do suporte de montagem8 (Modelo de pé axial)

 $21 + 4/15 \times 45 + 8 = 41 \text{ g}$

Localização da porta no cabeçote traseiro

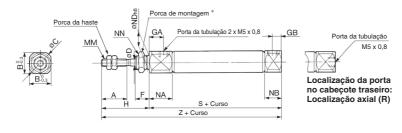

Perpendicular ao eixo do cilindro ou em linha com o eixo do cilindro disponível para o modelo básico.


Perpendicular

Resistência deslizante do lado de baixa fricção

^{*} Conversão na pressão de trabalho do cilindro:

Construção (Não é possível desmontar)


Lista de peças

Nº	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4	Haste do pistão	Aço inoxidável	
5	Pistão	Liga de alumínio	Cromado
6	Porca de montagem	Latão	Revestido com níquel

Nº	Descrição	Material	Nota
7	Porca da haste	Aço laminado	Zinco cromado
8	Amortecedor	Uretano	
9	Vedação do pistão	NBR	Para baixa fricção
10	Vedação da haste	NBR	Para baixa fricção
11	Gaxeta da camisa	NBR	
12	Gaxeta do pistão	NBR	

Modelo básico (B)

CJ2QB Diâmetro - Curso Localização da porta no cabeçote traseiro

Porca da haste

	aterial: I	erro			
Referência	Diámetro aplicável (mm)	B ₂	C ₂	d	H2
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

* Para detalhes da porca de montagem, consulte a página 71

															(111111)
Diâmetro	Α	В	С	D	F	GA	GB	Н	MM	NA	NB	ND	NN	S	Z
10	15	12	14	4	8	8	5	28	M4 x 0,7	12,5	9,5	8 -0,022	M8 x 1,0	46	74
16	15	18,3	20	5	8	8	5	28	M5 x 0,8	12,5	9,5	10 -0,022	M10 x 1,0	47	75
10	10	10,0	20	J	0	0	J	20	1VIO X 0,0	12,0	3,3	IU -0,022	1V1 10 X 1,0	47	73

Para saber as dimensões de cada suporte de montagem, consulte as páginas 68 a 70.

SMC

CS1 CS2

MB1

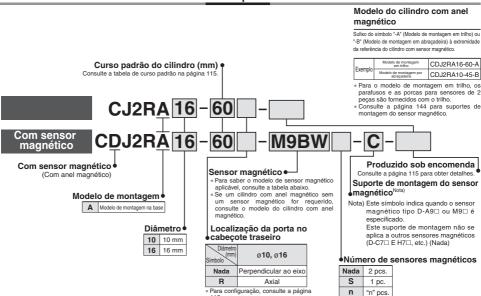
CA2

CA2

CJ1 CJP

CJ2 CM2 CM2

CM3 CG1 CG1 CG3 MB MB


D-□ -X□

Cilindro de ar: Tipo de montagem direta Dupla ação, Haste simples

Série CJ2R

ø10, ø16

Como pedir

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		Catanada	indicador	Cabeamento	Т	ensão da	carga	Mo	delo do ser	sor magné	tico	Comp	rimen	to do	cabo	(m)													
Tipo	Função especial	Entrada elétrica	igi	(saída)		CC	CA	Montagem	em banda	Montagem	em trilho	0,5	1	3	5	Nenhuma	Conector pré-cabeado	Carga a	plicável										
		Cictioa	Ped	(====)		00	Perpe		Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)	,												
				3-fios (NPN)		5 V. 12 V		M9NV	M9N	M9NV	M9N	•	•		0	_	0	Circuito de CI											
မ	_	Grommet		3-fios (PNP)		5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Ci											
sólido				2-fios		12 V		M9BV	M9B	M9BV	M9B	•		•	0	_	0												
		Conector		2-1108		12 V		_	H7C	J79C	_	•	_	•	•	•	_												
estado				3-fios (NPN)		5 V, 12 V		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0	Circuito de Cl	Relé.										
est	Indicação de diagnóstico		Sim	3-fios (PNP)	24 V	J V, 12 V	—	M9PWV	M9PW	M9PWV	M9PW	•		•	0	_	0	Circuito de Ci	CLP										
de	(indicador de 2 cores)		Grommet	Grommet	Grommet	Grommet								2-fios		12 V		M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0	_	CLI
	Resistente à água (indicador de 2 cores)							3-fios (NPN)		5 V, 12 V		M9NAV**	M9NA**	M9NAV**	M9NA**	0	0	•	0	_	0	Circuito de Cl							
ensor						3-fios (PNP)		J V, 12 V		M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Ci									
Se						2-fios		12 V		M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0	_									
	Com saída de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V		_	H7NF		F79F	•	_	•	0	_	0	Circuito de Cl											
reed		Grommet	Grommet	Grommet	Grommet						3-fios (equivalente a NPN)	_	5 V	_	A96V	A96	A96V	A96	•	_	•	_	_	_	Circuito de CI	_			
						Sim	,		_	200 V	_	_	A72	A72H	•	_	•	_	_	_									
tipo	_						100 V	A93V	A93	A93V	A93	•	_	•	•	_	_	1 —											
			Não			12 V	100 V ou menos	A90V	A90	A90V	A90	•	_	•	_	_	_	Circuito de Cl	Relé,										
Sensor		Sim	Sin	Conector Sir	Sim	2-fios	24 V	12 V		_	C73C	A73C	_	•	_	•	•	•	_	_	CLP								
		Conector	Não				24 V ou menos	_	C80C	A80C	_	•	_	•	•	•	_	Circuito de Cl]										
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_	_	A79W	_	•	_	•	_	_	_	_	1										

- ** Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água.
- Consulte a SMC sobre os tipos resistentes à água com as referências acima * Símbolos de comprimento do cabo: 0,5 m......Nada(Exemplo) M9NW

 * Como
- * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes
- 1 m----- M (Exemplo) M9NWM 3 m----- L (Exemplo) M9NWL Nenhum-- Z (Exemplo) M9NWZ
- * Sensores de estado sólido marcados com *C* são produzidos após o recebimento do pedido.

 * Os sensores magnéticos D-A9\\[\] \[\]
- somente os suportes de montagem do sensor magnético serão montados antes do envío.)

 Quando os tipos D-A9\(\subseteq \subse

Cilindro de ar: Tipo de montagem direta Dupla ação, Haste simples

Série CJ2R

CJ1

CJ₂ CM2

CM2

СМЗ CG1 -Z

CG1

CG3

MB

MB

MB1

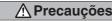
CA2

CA2 CS₁

CS2

O cilindro de montagem direta Série CJ2R pode ser instalado diretamente através do uso de um cabeçote dianteiro quadrado.

Símbolo


Dupla ação, haste simples, amortecedor de borracha

Especificações produzidas sob encomenda (Para obter detalhes, consulte as

páginas 1675 a 1818).

	Símbolo	Especificações			
-XA Alteração do formato da extremidade da ha					
	-XC9	Cilindro de curso ajustável/Retração ajustável			
	-XC22	Vedações de borracha de flúor			
	-XC51	Com bico de mangueira			

Consulte a página 64 antes do manuseio.

Especificações

Diâmetro (mm)	10 16					
Ação	Dupla ação, l	Haste simples				
Fluido	Д	\r				
Pressão de teste	1 N	1Pa				
Pressão máxima de trabalho	0,7 I	MPa				
Pressão mínima de trabalho	0,06	MPa				
Temperatura ambiente e do fluido	Sem sensor magnético: -10°C a 70°C,	Com sensor magnético: -10°C a 60°C				
Amortecedor	Amorteciment	o de borracha				
Lubrificação	Não requer (dispo	ensa lubrificação)				
Tolerância de comprimento do curso	+1,0 0					
Velocidade do pistão	e do pistão 50 a 750 mm/s					
Energia cinética admissível	0,035 J 0,090 J					
Sem congelamento						

Curso padrão

	(1111)
Diâmetro	Curso padrão
10	15, 30, 45, 60, 75, 100, 125, 150
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Localização da porta no cabeçote traseiro

Perpendicular ao eixo do cilindro ou em linha com o eixo do cilindro disponível para o modelo básico.

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- · Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- · Referência do suporte de montagem do sensor

Peso		(g)
Diâmetro (mm)	10	16

		(3)
Diâmetro (mm)	10	16
Peso básico *	33	61,5
Peso adicional por cada 15 mm de curso	4	6,5

A porca da haste está incluída no peso básico.

Cálculo: (Exemplo) CJ2RA10-45

- Peso básico ·33 (ø10)
- Peso adicional ·4/15 curso
- Curso do cilindro-----33 + 4/15 x 45 = 45 g 45 curso

D-□ -X□

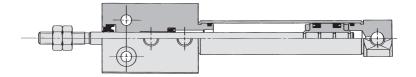
Technical

Série CJ2R

Série Limpa

10-CJ2RA Diâmetro - Curso Localização da porta no cabeçote traseiro

Série Limpa


Cilindro de ar aplicável para o sistema que descarrega vazamento do corte da haste diretamente para a parte externa da sala limpa pela porta de alívio e fazendo um corte da haste do atuador tendo uma construção de vedação dupla.

Especificações

Ação	Dupla ação, Haste simples
Diâmetro (mm)	10, 16
Pressão máxima de trabalho	0,7 MPa
Pressão mínima de trabalho	0,08 MPa
Amortecedor	Amortecimento de borracha
Curso padrão (mm)	Igual ao do tipo padrão. (Consulte a página 115.)
Sensor magnético	Montável (modelo de montagem em abraçadeira)
Montagem	Modelo de montagem na base

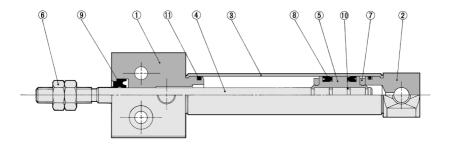
Para obter detalhes, consulte o catálogo separado "Série limpa".

Construção 10-CJ2RA (Série Clean) (não é possível desmontar)

CJ1 CJP

CJ2 CM2 CM2 СМЗ CG1 -Z

CG1 CG3 MB MB

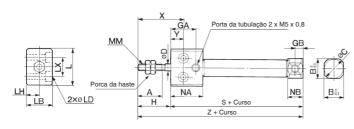

MB1 CA2 -Z

CA2

CS1

CS2

Construção (Não é possível desmontar)


Lista de peças

Nº	Descrição	Material	Nota			
1	Cabeçote dianteiro	Liga de alumínio	Anodizado			
2	Cabeçote traseiro	Liga de alumínio	Anodizado			
3	Tubo do cilindro	Aço inoxidável				
4	Haste do pistão	Aço inoxidável				
5	Pistão	Liga de alumínio				
6	Porca da haste	Aço laminado	Zinco cromado			

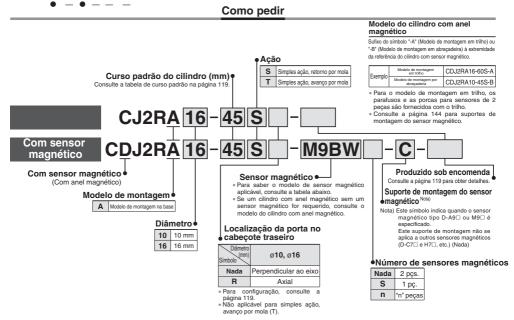
Nº	Descrição	Material	Nota
7	Amortecedor	Uretano	
8	Vedação do pistão	NBR	
9	Vedação da haste	NBR	
10	Gaxeta do pistão	NBR	
11	Gaxeta da camisa	NBR	

Modelo de montagem na base

CJ2RA Diâmetro - Curso Localização da porta no cabeçote traseiro

Localização da porta no cabeçote traseiro: Localização axial (R)

Porca da haste



				Material:	Ferro
Referência	Diâmetro aplicável (mm)	B ₂	C ₂	d	H2
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

																			(mm)
Diâmetro	Α	В	С	D	GA	GB	Н	L	LB	LD	LH	LX	MM	NA	NB	Х	Υ	S	Z
10	15	12	14	4	16	5	20	23	16	Profundidade do furo escareado ø3,5, ø6,5 4	8	12	M4 x 0,7	20,5	9,5	28	8	54	74
16	15	18,3	20	5	16	5	20	26	20	Profundidade do furo escareado ø4,5, ø8 5	10	16	M5 x 0,8	20,5	9,5	28	8	55	75

D-□

Cilindro de ar: Tipo de montagem direta Simples ação, retorno/avanço por mola Série CJ2R ø**10**, ø16

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		Entrada	indicador	Cabeamento	Т	ensão da	carga	Mo	delo do ser	isor magné	tico	Comp	rimer	ito do	cabo	(m)									
Tipo	Função especial	elétrica	indic	(saida)		СС	CA	Montagem	em banda	Montagem	em trilho	0,5	1	3	5	Nenhuma	Conector pré-cabeado	Carga a	plicável						
		Cictioa	100	(====)		CC	CA	Perpendicular	Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)	pro cabouso								
				3-fios (NPN)		5 V, 12 V		M9NV	M9N	M9NV	M9N	•	•	•	0	_	0								
sólido		Grommet		3-fios (PNP)		5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Cl							
i,	_			0.0	1	12 V		M9BV	M9B	M9BV	M9B	•	•	•	0	_	0								
		Conector]	2-fios		12 V		_	H7C	J79C	_	•	_	•	•	•	_	_							
estado			1	3-fios (NPN)	1	F 1/ 10 1/	J	M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0		D-14						
est	Indicação de diagnóstico		Sim	3-fios (PNP)	24 V	5 V, 12 V	_	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuito de Cl	Relé, CLP						
g	(indicador de 2 cores)			2-fios	1	5 V 12 V		12 V	12 V	12 V	12 V	12 V	12 V	M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0	_	CLP
		Grommet		3-fios (NPN)	1				M9NAV**	M9NA**	M9NAV**	M9NA**	0	•	0	_	0								
Sensor	Resistente à água (indicador de 2 cores)			3-fios (PNP)	1			M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Cl							
လိ	(indicador de 2 cores)			2-fios		12 V		12 V		M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0						
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)	1	5 V, 12 V		_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de Cl							
_				3-fios		5 V	_	A96V	A96	A96V	A96	•	_	•		_	_	Circuito de Cl	_						
reed			o.m	(equivalente a NPN)	—																				
2		Grommet	Joilli			_	200 V	_		A72	A72H	•	_	•	_	_	_	_							
tipo	_						V 100 V 100 V ou menos —	A93V	A93	A93V	A93	•	_	•	•	_	_								
-			Não	2-fios		12 V		A90V	A90	A90V	A90	•	_	•	<u> </u>	_	_	Circuito de Cl	Relé,						
Sensor		Conector	Sim	∠-fl0S	24 V	12 V		_	_	C73C	A73C		•	_	•	•	•	_		CLP					
Se			Não				24 V ou menos	_	C80C	A80C	_	•	_	•	•	•	_	Circuito de Cl							
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_	_	A79W	_	•	_	•	_	_	_	_							

- ** Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água.
- Consulte a SMC sobre os tipos resistentes à água com as referências acima
 * Símbolos de comprimento do cabo: 0,5 m........Nada(Exemplo) M9NW
 * Como há o * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes * Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627.

118

* Sensores de estado sólido marcados com "O" são produzidos após o recebimento do pedido.

* Os sensores magnéticos D-A9IIIM9IIII (A7IIII/A80II/F7IIII) São enviados juntos (não montados). (No entanto, quando os tipos D-A9III/M9IIII forem selecionados, somente os suportes de montagem do sensor magnético serão montados antes do envio.)

* Quando os tipos D-A9III/M9IIII forem montados em um trilho, peça os suportes de montagem do sensor magnético serão um trilho, peça os suportes de montagem do sensor magnético separadamente. Consulte a página 144 para obter detalhes.

Série CJ2R

CJ1

CJ2 CM2

CM2

CM3 CG1 -Z

CG3

MB -Z

MB

MB1

CA2

CA₂

CS₁

CS₂

O cilindro de montagem direta Série CJ2R pode ser instalado diretamente através do uso de um cabecote dianteiro quadrado.

Símbolo

Simples ação, Retorno por mola, Amortecedor de borracha

Simples ação, Avanço por mola, Amortecedor de borracha

Especificações produzidas sob encomenda

Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC51	Com bico de mangueira

⚠ Precauções

Consulte a página 64 antes do manuseio.

Especificações

Diâmetro (mm)	10	16					
Ação	Simples ação, Retorno por mola/Simples ação, Avanço por mo						
Fluido	,	Ar					
Pressão de teste	1 M	//Pa					
Pressão máxima de trabalho	0,7	MPa					
Pressão mínima de trabalho	0,15 MPa						
Temperatura ambiente e do fluido	Sem sensor magnético: -10°C a 70°C,	Com sensor magnético: -10°C a 60°C *					
Amortecedor	Amortecimen	to de borracha					
Lubrificação	Não requer (disp	ensa lubrificação)					
Tolerância de comprimento do curso	+	-1,0 0					
Velocidade do pistão	50 a 7	50 mm/s					
Energia cinética admissível	0,035 J	0,090 J					
* Com consolemente		•					

^{*} Sem congelamento

Curso padrão

ourse paur	ao (m
Diâmetro	Curso padrão
10	15, 30, 45, 60
16	15, 30, 45, 60, 75, 100, 125, 150

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Acessório/Para obter detalhes, consulte a página 71.

Equipamento padrão	Porca da haste
Opcional	Junta articulada simples, garfo *

^{*} O pino da articulação e o anel retentor são enviados junto com a junta articulada dupla.

Força de reação da mola

r orga do roação da moia												
Diâmetro	Força de reaçã	ão da mola (N)										
(mm)	Primário	Secundário										
10	3,53	6,86										
16	6,86	14,2										

Mola com carga de Mola com carga de montagem primária montagem secundária

Quando a mola é aiustada no cilindro Quando a mola é contraída aplicando ar

Localização da porta no cabeçote traseiro

Perpendicular ao eixo do cilindro ou em linha com o eixo do cilindro disponível para o modelo básico.

Axial

Perpendicular

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos

- · Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

SMC

1

D-□

Technical data

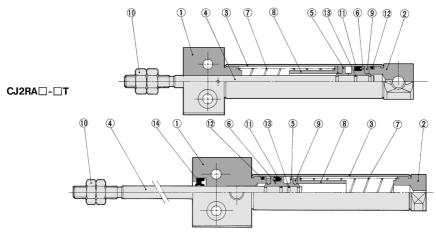
Série CJ2R

Peso

Retorno por mola

netorno por	IIIOIU		(9)
D	iâmetro (mm)	10	16
	Curso 15	36	68
	Curso 30	43	85
	Curso 45	52	107
Peso *	Curso 60	61	129
1 630	Curso 75	_	150
	Curso 100	_	193
	Curso 125	_	229
	Curso 150	_	255

^{*} A porca da haste está incluída no peso.


Avanco por mola

rtrango poi	o.u		(9)
D	iâmetro (mm)	10	16
	Curso 15	42	73
	Curso 30	48	89
	Curso 45	57	109
Peso *	Curso 60	65	130
1 630	Curso 75	_	149
	Curso 100	_	187
	Curso 125	_	221
	Curso 150	_	245

^{*} A porca da haste está incluída no peso.

Construção (Não é possível desmontar)

CJ2RA□-□S

Lista de peças

Nº	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4	Haste do pistão	Aço inoxidável	
5	Pistão A	Liga de alumínio	
6	Pistão B	Liga de alumínio	
7	Mola de retorno	Aço	Zinco cromado

Nº	Descrição	Material	Nota
8	Assento da mola	Latão	
9	Amortecedor	Uretano	
10	Porca da haste	Aço laminado	Zinco cromado
11	Vedação do pistão	NBR	
12	Gaxeta da camisa	NBR	
13	Gaxeta do pistão	NBR	
14	Vedação da haste	NBR	

CJ1 CJP

CJ2

CM2

CM2 СМЗ

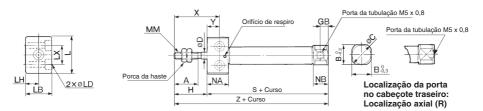
CG1

CG₁ CG3

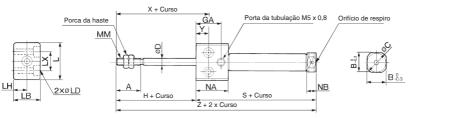
MB -Z

MB

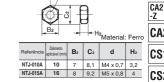
MB1


CA₂

CS₁


CS₂

Simples ação: Modelo de montagem na base


Retorno por mola: CJ2RA Diâmetro - Curso S Localização da porta no cabeçote traseiro

Avanço por mola: CJ2RA Diâmetro Curso T

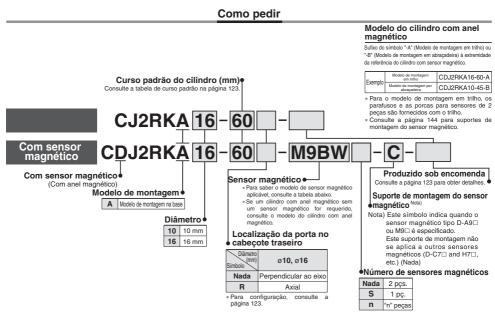
Porca da haste

																(mm)
Diâmetro	Α	В	С	D	GB	Н	L	LB	LD	LH	LX	MM	NA	NB	Х	Υ
10	15	12	14	4	5	20	23	16	Profundidade do furo escareado ø3,5, ø6,5 4	8	12	M4 x 0,7	13,5	9,5	28	8
16	15	18,3	20	5	5	20	26	20	Profundidade do furo escareado e4,5, e8 5	10	16	M5 x 0,8	13,5	9,5	28	8

Dimensões por curso: Retorno por mola

Simbolo				,	S							7	<u>z</u>			
Diâmetro Curso (mm)	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	53,5	61	73	85	-	-	-	-	73,5	81	93	105	-	-	-	-
16	53,5	62	74	86	92	116	134	146	73,5	82	94	106	112	136	154	166

Dimensões por curso: Avanço por mola (As dimensões não mencionadas na tabela abaixo são as mesmas da tabela acima).


Diâmetro		NI A	ND				5	3							Z	<u> </u>			
Diametro	GA	NA	NB	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	16	20,5	5,5	56,5	64	76	88	-	-	-	-	76,5	84	96	108	-	-	-	-
16	16	20,5	5,5	56,5	65	77	89	95	119	137	149	76,5	85	97	109	115	139	157	169

D-□ -X□

Technical

Cilindro pneumático: Montagem direta, Tipo de haste antigiro Dupla ação, Haste simples

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		Entrada	ador	Cabeamento	Т	ensão da	carga	Mod	delo do ser	nsor magné	tico	Comp	rimer	ito do	cabo	(m)			
Tipo	Função especial	elétrica	indicador	(saida)		CC	CA	Montagem	em banda	Montagen	em trilho	0,5	1	3		Nenhuma	Conector pré-cabeado	Carga a	ıplicável
		oiotiioa	Fed	(00	OA.	Perpendicular	Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)			
				3-fios (NPN)		5 V. 12 V		M9NV	M9N	M9NV	M9N	•	•	•	0	_	0	Circuito de CI	
용	_	Grommet		3-fios (PNP)		J V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Ci	
sólido				2-fios		12 V		M9BV	M9B	M9BV	M9B	•			0	_	0		
		Conector		2-1108		12. V		_	H7C	J79C	_	•	_	•	•	•	_		
estado			1	3-fios (NPN)		5 V, 12 V		M9NWV	M9NW	M9NWV	M9NW	•			0	_	0	Circuito de Cl	Relé.
est	Indicação de diagnóstico		Sim	3-fios (PNP)	24 V	J V, 12 V	—	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuito de Ci	CLP
g	(indicador de 2 cores)			2-fios		12 V		M9BWV	M9BW	M9BWV	M9BW	•		•	0	_	0	_	CLF
		Grommet		3-fios (NPN)		5 V, 12 V		M9NAV**	M9NA**	M9NAV**	M9NA**	0	0	•	0	_	0	Circuito de Cl	
ensor	Resistente à água (indicador de 2 cores)			3-fios (PNP)		J V, 12 V		M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Ci	
Se	(maiodadi de 2 dores)			2-fios		12 V		M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0	_	
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V		_	H7NF	_	F79F	•	_		0	_	0	Circuito de Cl	
ъ				3-fios		5 V	_	A96V	A96	A96V	A96	•	_	•	_	_	_	Circuito de Cl	_
reed		Grommet	Sim	(equivalente a INPIN)	_		200 V			A72	A72H								
tipo	_	Grommer					100 V	A93V	A93	A93V	A93	-	-	-	=	=		-	
≢			Não				100 V 100 V ou menos		A90	A90V	A90	-	_	-	_	_		Circuito de Cl	Relé.
Sensor		\vdash	Sim	2-fios	24 V	12 V	100 v ou menos	A90V	C73C	A73C	A90 —	-	_	•	=	_		Circuito de Ci	CLP
en		Conector	Não		24 V		041/		C80C	A80C		-	_	-	-		_		OLI
Ñ			-				24 V ou menos		COUC			•	_	•	•	•	_	Circuito de Cl	
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	_							A79W	- 0140 - 3	•	_	•	1—	_	_		

- ** Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água. Consulte a SMC sobre os tipos resistentes à água com as referências acima.

 * Simbolos de comprimento do cabo: 0,5 m.......Nada(Exemplo) M9NW

 * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para c

 * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para c

 * Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as pági
- * Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhe * Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627.

 - 3 m······ L (Exemplo) M9NWL 5 m····· Z (Exemplo) M9NWZ
 - Nenhum... N (Exemplo) H7CN
- * Sensores de estado sólido marcados com "O" são produzidos após o recebimento do pedido.
 * Os sensores magnéticos D-A9\(\sum M9\\ \sum (A7\) \subseteq (A7\) \subseteq (A7\) (A8\(\sup (F7\) \subseteq (J/J7\) \subseteq são enviados juntos (não montados). (No entanto, quando os tipos D-A9\(\sum M9\) (No entanto, quando os tipos D-A9\(\sum M

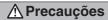
Cilindro pneumático: Montagem direta, Tipo de haste antigiro Dupla ação, Haste simples Série CJ2RK

Um cilindro em que a haste não gira por causa do formato da haste hexagonal.

Precisão no antigiro ø10: ±1,5°, ø16: ±1°

Símbolo

Dupla ação, haste simples, amortecedor de borracha



Especificações produzidas sob encomenda

(Para obter detalhes, consulte as páginas 1675 a 1818).

Símbolo	Especificações
-XA□	Alteração do formato da extremidade da haste
-XC9	Cilindro de curso ajustável/Retração ajustável
-XC51	Com bico de mangueira

Consulte as páginas 82 e 90 antes do manuseio.

Especificações

Diâmetro (mm)	10	16
Ação	Dupla ação, l	Haste simples
Fluido	Д	Ar .
Pressão de teste	1 N	1Pa
Pressão máxima de trabalho	0,71	MPa
Pressão mínima de trabalho	0,06	MPa
Temperatura ambiente e do fluido	Sem sensor magnético: -10°C a 70°C,	Com sensor magnético: -10°C a 60°C *
Amortecedor	Amorteciment	o de borracha
Lubrificação	Não requer (disp	ensa lubrificação)
Tolerância de comprimento do curso	+	1,0
Precisão antigiro da haste	±1,5°	±1°
Velocidade do pistão	50 a 75	0 mm/s
Energia cinética admissível	0,035 J	0,090 J

^{*} Sem congelamento

ourso paur	ao (mr
Diâmetro	Curso padrão
10	15, 30, 45, 60, 75, 100, 125, 150
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Acessório/Para obter detalhes, consulte a página 71.

Equipamento padrão	Porca da haste
Opção **	Junta articulada simples, garfo *

^{*} O pino da articulação e o anel retentor são enviados junto com a junta articulada dupla.

Localização da porta no cabeçote traseiro

Perpendicular ao eixo do cilindro ou em linha com o eixo do cilindro disponível para o modelo básico.

Axial

Perpendicular

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- · Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

Peso		(g)
Diâmetro (mm)	10	16
Peso básico *	33	61,5
Peso adicional por cada 15 mm de curso	4	6,5

A porca da haste está incluída no peso básico.

Cálculo: (Exemplo) CJ2RKA10-45

- · Peso básico·· 33 (ø10)
- · Peso adicional··· ··· 4/15 curso · Curso do cilindro····· · 45 curso
- $33 + 4/15 \times 45 = 45 g$

D-□

CJ1 **CJP**

CJ₂ CM2 CM2

СМЗ CG1 CG₁ CG3

MB

MB

MB1

CA2

CA2

CS₁

CS₂

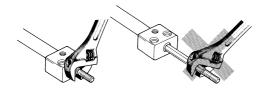
-X□ Technical

^{**} Peça separadamente.

Série CJ2RK

∆ Cuidado

Cuidado ao manusear


<Ao montar>

 Evite usar o cilindro pneumático de forma que o torque rotacional seja aplicado à haste do pistão, porque isso deformará a guia não rotativa, afetando assim a precisão não rotativa.

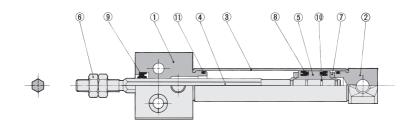
Torque rotacional permitido (N·m)	ø 10	ø 16
Torque Totacional permittuo (14-111)	0.02	0.04

- Opere o cilindro de forma que a carga para a haste do pistão seja sempre aplicada na direção axial.
- Para aparafusar um suporte na parte roscada na extremidade da haste do pistão, certifique-se de retrair totalmente a haste do pistão e colocar uma chave de fenda nas partes planas da haste que sobressaem.

Aperte-o observando a consideração para evitar que o torque de aperto seja aplicado à guia não rotativa.

CJ1 CJP

CJ2 CM2 -Z CM2

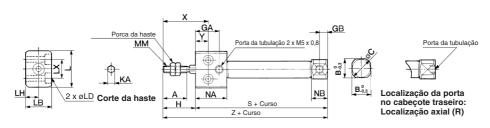

CG1 -Z CG1 CG3

MB MB1

CA2 -Z

CS1

Construção (Não é possível desmontar)


Lista de peças

N°	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4	Haste do pistão	Aço inoxidável	
5	Pistão	Liga de alumínio	
6	Porca da haste	Aço laminado	Zinco cromado

N°	Descrição	Material	Nota
7	Amortecedor	Uretano	
8	Vedação do pistão	NBR	
9	Vedação da haste	NBR	
10	Gaxeta do pistão	NBR	
11	Gaxeta da camisa	NBR	

Modelo de montagem na base

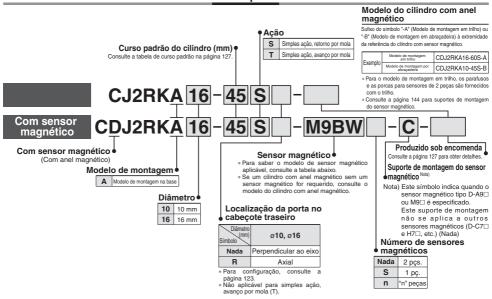
CJ2RKA Diâmetro Curso Localização da porta no cabeçote traseiro

			- 1	viaterial: I	-erro
Referência	Diâmetro aplicável (mm)	B ₂	C ₂	d	H ₂
NTJ-010A	10	7	8,1	M4 x 0,7	3,2
NTJ-015A	16	8	9,2	M5 x 0,8	4

																			(mm)
Diâmetro	Α	В	С	GA	GB	Н	KA	L	LB	LD	LH	LX	MM	NA	NB	Х	Υ	S	Z
10	15	12	14	16	5	20	4,2	23	16	Profundidade do furo escareado ø3,5, ø6,5 4	8	12	M4 x 0,7	20,5	9,5	28	8	54	74
16	15	18,3	20	16	5	20	5,2	26	20	Profundidade do furo escareado e4,5, e8 5	10	16	M5 x 0,8	20,5	9,5	28	8	55	75

D
-X

Technical


125

Cilindro pneumático: Montagem direta, Tipo de haste antigiro Simples ação, retorno/avanço por mola Série CJ2RK

Como pedir

ø10, ø16

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		C-4	旨	Cabeamento	T	ensão da	carga	Mod	delo do ser	nsor magné	tico	Comp	rimer	ito do	cabo	(m)				
Tipo	Função especial	Entrada elétrica	indicador	(saída)		СС	CA	Montagem	em banda	Montagen		0,5	1	3	5	Nenhuma	Conector pré-cabeado	Carga a	plicável	
		Ciction	<u>B</u>	(====)		00	CA	Perpendicular	Em linha	Perpendicular	Em linha	(Nada)	(M)	(L)	(Z)	(N)	pro tabouso			
				3-fios (NPN)		5 V, 12 V		M9NV	M9N	M9NV	M9N	•	•	•	0	_	0	Circuito de Cl		
용		Grommet		3-fios (PNP)		5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Ci		
sólido	_			0.0		12 V		M9BV	M9B	M9BV	M9B	•	•	•	0	_	0			
		Conector		2-fios		12 V		_	H7C	J79C	_	•	_	•	•	•	_	_		
estado				3-fios (NPN)		5 V, 12 V		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0		D-14	
est	Indicação de diagnóstico		Sim	3-fios (PNP)	24 V	5 V, 12 V	—	M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	Circuito de Cl	Relé, CLP	
e	(indicador de 2 cores)			2-fios]	12 V]	M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0		CLF	
		Grommet		3-fios (NPN)		5 V, 12 V	5 V 40 V	1	M9NAV**	M9NA**	M9NAV**	M9NA**	0	0	•	0	_	0		
Sensor	Resistente à água (indicador de 2 cores)			3-fios (PNP)				M9PAV**	M9PA**	M9PAV**	M9PA**	0	0	•	0	_	0	Circuito de Cl		
Se	(indicador de 2 cores)			2-fios]	12 V]	M9BAV**	M9BA**	M9BAV**	M9BA**	0	0	•	0	_	0			
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V		_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de Cl		
ъ				3-fios		5 V	_	A96V	A96	A96V	A96	•	_	•	_	_	_	Circuito de Cl	_	
reed		Grommet	Sim	(equivalente a NPN)	_		200 V			A 70	A 7011	_		_	_					
0		Grommet							-	A72	A72H	•	_	•	=	-		_		
효	_		H				100 V	A93V	A93	A93V	A93	•	_	•	•	_				
ö			Não	2-fios		12 V	100 V ou menos	A90V	A90	A90V	A90	•	_	•	-	_	_	Circuito de Cl	Relé,	
Sensor tipo		Conector	Sim		24 V				C73C	A73C		•	_	•	•	•			CLP	
ഗ്			Não				24 V ou menos	_	C80C	A80C		•	_	•	•	•	_	Circuito de Cl		
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_	_	A79W	_		<u> </u>		<u> </u>	_	_			

- ** Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água. Consulte a SMC sobre os tipos resistentes à água com as referências acima.
- Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes.
 Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627.

126

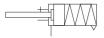
- Sensores de estado sólido marcados com "O' são produzidos após o recebimento do pedido.
 Sos ensores magnéticos D-A9□/MM9□/A/7□/A80□/F/□/A/10□/São envidados juntos (não montados). (No entanto, quando os tipos D-A9□□/M9□□ | forem selecionados, somente os suportes de montagem do sensor magnético serão montados antes do envico.)
- « Quando os tipos D-A9 🗆 M9 🗆 forem montados em um trilho, peça os suportes de montagem do sensor magnético separadamente. Consulte a página 144 para obter detalhes.

Cilindro pneumático: Montagem direta, Tipo de haste antigiro Simples ação, retorno/avanço por mola Série CJ2RK

Um cilindro em que a haste não gira por causa do formato da haste hexagonal.

Precisão no antigiro ø10: ±1,5°, ø16: ±1°

Pode operar sem lubrificação.



Símbolo

Simples ação, Retorno por mola, Amortecedor de borracha

Simples ação, Avanço por mola, Amortecedor de borracha

Especificações produzidas sob encomenda

(Para obter detalhes, consulte as páginas 1675 a 1818).

Símbolo	mbolo Especificações							
-XA□	Alteração do formato da extremidade da haste							
-XC51	Com bico de mangueira							

⚠ Precauções

Consulte as páginas 82 e 90 antes do manuseio.

Especificações

Diâmetro (mm)	10	16				
Ação	Simples ação, Retorno por mola	/Simples ação, Avanço por mola				
Fluido	Į.	\r				
Pressão de teste	1 N	//Pa				
Pressão máxima de trabalho	0,7	MPa				
Pressão mínima de trabalho	0,15 MPa					
Temperatura ambiente e do fluido	Sem sensor magnético: –10°C a 70°C, Com sensor magnético: –10°C a 60°C					
Amortecedor	Amorteciment	to de borracha				
Lubrificação	Não requer (disp	ensa lubrificação)				
Tolerância de comprimento do curso		1,0				
Precisão antigiro da haste	±1,5° ±1°					
Velocidade do pistão	50 a 750 mm/s					
Energia cinética admissível	0,035 J 0,090 J					

^{*} Sem congelamento

Curso padrão

Curso paur	aO (mm
Diâmetro	Curso padrão
10	15, 30, 45, 60
16	15, 30, 45, 60, 75, 100, 125, 150

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Acessório/Para obter detalhes, consulte a página 71.

Equipamento padrão	Porca da haste
Opção **	Junta articulada simples, garfo *

^{*} O pino da articulação e o anel retentor são enviados junto com a junta articulada dupla.

Força de reação da mola

Г	Diâmetro	Força de reaçã	ão da mola (N)				
	(mm)	Primário	Secundário				
	10	3,53	6,86				
	16	6,86	14,2				

Mola com carga de Mola com carga de montagem montagem primária secundária

Quando a mola é ajustada no cilindro Quando a mola é contraída aplicando ar

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- · Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

D-□

CJ1

CJP

CJ2 CM2 -Z CM2

CM3

CG1 -Z CG1

CG3

MB1

CA2

CA2

CS₂

MB -Z MB

data

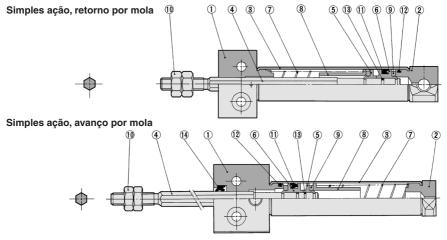
^{**} Peça separadamente.

Série CJ2RK

Peso

Retorno por mola	Ret	orno	por	mola
------------------	-----	------	-----	------

netorno por	IIIOIa		(g)
D	iâmetro (mm)	10	16
	Curso 15	36	68
	Curso 30	43	85
	Curso 45	52	107
Peso *	Curso 60	61	129
1 630	Curso 75	_	150
	Curso 100	_	193
	Curso 125	_	229
	Curso 150	_	255

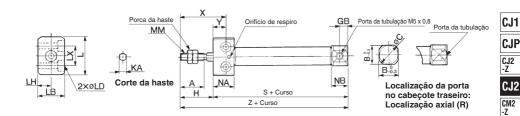

^{*} A porca da haste está incluída no peso.

Avanço por mola

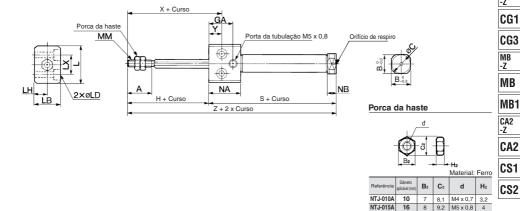
3 1			(9)
Di	âmetro (mm)	10	16
	Curso 15	42	73
	Curso 30	48	89
	Curso 45	57	109
Peso *	Curso 60	65	130
1 000	Curso 75	_	149
	Curso 100	_	187
	Curso 125	_	221
	Curso 150	_	245

^{*} A porca da haste está incluída no peso.

Construção (Não é possível desmontar)


Lista de peças

	1 3		
Nº	Descrição	Material	Nota
1	Cabeçote dianteiro	Liga de alumínio	Anodizado
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4	Haste do pistão	Aço inoxidável	
5	Pistão A	Liga de alumínio	
6	Pistão B	Liga de alumínio	
7	Mola de retorno	Aço	Zinco cromado
8	Assento da mola	Latão	


Nº	Descrição	Material	Nota
9	Amortecedor	Uretano	
10	Porca da haste	Aço laminado	Zinco cromado
11	Vedação do pistão	NBR	
12	Gaxeta da camisa	NBR	
13	Gaxeta do pistão	NBR	
14	Vedação da haste	NBR	

Simples ação: Modelo de montagem na base

Retorno por mola: CJ2RK Diâmetro - Curso S Localização da porta no cabeçote traseiro

Avanço por mola: CJ2RK Diâmetro - Curso T

																(mm)
Diâmetro	Α	В	С	GB	Н	KA	L	LB	LD	LH	LX	MM	NA	NB	Х	Υ
10	15	12	14	5	20	4,2	23	16	Profundidade do furo escareado ø3,5, ø6,5 4	8	12	M4 x 0,7	13,5	9,5	28	8
16	15	18,3	20	5	20	5,2	26	20	Profundidade do furo escareado e4,5, e8 5	10	16	M5 x 0,8	13,5	9,5	28	8

Dimensões por curso: Retorno por mola

56,5

65

16

20,5 5,5

16

Símbolo					S							- 2	Z			
Diâmetro Curso (mm)	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150	5 a 15	16 a 30	31 a 45	46 a 60	61 a 75	76 a 100	101 a 125	126 a 150
10	53,5	61	73	85	-	-	-	-	73,5	81	93	105	-	-	-	-
16	53,5	62	74	86	92	116	134	146	73,5	82	94	106	112	136	154	166

95 | 119 | 137 | 149

89

Dimensões por curso: Avanço por mola (As dimensões não mencionadas na tabela abaixo são as mesmas da tabela acima). s Diâmetro GA NA NB 31 a 45 | 46 a 60 | 61 a 75 76 a 100 101 a 125 | 126 a 150 101 a 125 5 a 15 16 a 30 31 a 45 46 a 60 61 a 75 5 a 15 10 16 20.5 5.5 56.5 64 76.5 84 96 108 76 88

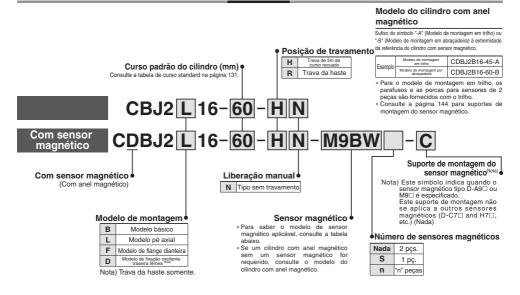
76,5

97 109

115 | 139 | 157

85

D- -X - Technical


CM2

CM3

169

Cilindro pneumático: Com trava Série CBJ2

Como pedir

Sensores magnéticos aplicáveis/consulte as páginas 1559 a 1673 para obter mais informações sobre sensores magnéticos.

		Entrada	indicador	Cabeamento	Т	ensão da	carga	Mo	delo do ser	sor magné	tico	Comp	rimer	to do	cabo	(m)						
Tipo	Função especial	elétrica	indic	(saída)		CC CA		Montagem	em banda	Montagen	em trilho	0,5	1	3		Nenhuma	Conector pré-cabeado	Carga a	aplicável			
		Olothiou	Led	(OA.			Perpendicular		(Nada)	(M)	(L)	(Z)	(N)						
				3-fios (NPN)		5 V. 12 V		M9NV	M9N	M9NV	M9N	•	•	•	0	_	0	Circuito de CI				
မ	_	Grommet		3-fios (PNP)		5 V, 12 V		M9PV	M9P	M9PV	M9P	•	•	•	0	_	0	Circuito de Ci				
sólido				2-fios		12 V		M9BV	M9B	M9BV	M9B	•	•	•	0	_	0	_				
		Conector		2-1105		12 V			H7C	J79C		•	_	•	•	•	_					
estado				3-fios (NPN)		5 V, 12 V		M9NWV	M9NW	M9NWV	M9NW	•	•	•	0	_	0	Circuito de CI	Relé.			
	(indicador de 2 cores)	3-fios (PNP)	24 V	0 1, 12 1			M9PWV	M9PW	M9PWV	M9PW	•	•	•	0	_	0	On Canal Go Or	CLP				
ge		Grommet		2-fios		12 V		M9BWV	M9BW	M9BWV	M9BW	•	•	•	0	_	0					
5				3-fios (NPN)		5 V, 12 V					M9NA**		0	•	0	_	0	Circuito de CI				
ensor	Resistente à água (indicador de 2 cores)			3-fios (PNP)		0 1, 12 1	_					M9PA**		M9PA**	\sim	0	•	0	_	0	On Canal Go Or	
Š	, ,			2-fios		12 V		M9BAV**		M9BAV**	M9BA**	0	0	•	0	_	0					
	Com saida de diagnóstico (indicador de 2 cores)			4-fios (NPN)		5 V, 12 V		_	H7NF	_	F79F	•	_	•	0	_	0	Circuito de CI				
_				3-fios		5 V	_	A96V	A96	A96V	A96			_				Circuito de CI	l _			
reed			٥.	(equivalente a NPN)	-			ASOV	A30			_	_	_		_		Circuito de Ci				
		Grommet	Sim			_	200 V	_	_	A72	A72H	•	_	•	_	_	_	l _				
tipo	_						100 V	A93V	A93	A93V	A93	•	_	•	•	_	_					
			Não	2 fine		12 V	100 V ou menos	A90V	A90	A90V	A90	•	_	•	_	_	_	Circuito de CI	Relé, CLP			
Sensor		Conector	Sim	2-1108	24 V	12 0	_	_	C73C	A73C	_	•	<u> </u>	•	•	•	_					
S			Não	4			24 V ou menos	_	C80C	A80C	_	•	_	•	•	•	_	Circuito de Cl				
	Indicação de diagnóstico (indicador de 2 cores)	Grommet	Sim			_	_	_	_	A79W	_	•	<u> </u>	•	<u> </u>	<u> </u>	_	—				

- ** Sensores magnéticos resistentes à água são compatíveis para montagem nos modelos acima, mas neste caso, a SMC não pode garantir a resistência à água. Consulte a SMC sobre os tipos resistentes à água com as referências acima.
- Como há outros sensores magnéticos aplicáveis além dos listados, consulte a página 144 para obter detalhes.
 Para obter detalhes sobre os sensores magnéticos com conector pré-cabeado, consulte as páginas 1626 e 1627.
- * Sensores de estado sólido marcados com "O" são produzidos após o recebimento do pedido.
- * Os sensores magnéticos D-A9III/M9IIII/A7III/A80II/F7IIII/J7III 3ão enviados juntos (não montados). (No entanto, quando os tipos D-A9III/M9IIII forem selecionados, somente os suportes de montagem do sensor magnético serão montados antes do envio.)
- * Quando os tipos D-A9 🗆 M9 🗀 🖂 forem montados em um trilho, peça os suportes de montagem do sensór magnético separadamente. Consulte a página 144 para obter detalhes.

O cilindro de ar Série CJ2 é equipado com a função de trava.

Símbolo

Amortecimento de borracha

Especificações

Diâmetro (mm)	16		
Ação	Dupla ação, Haste simples		
Fluido	Ar		
Pressão de teste	1 MPa		
Pressão máxima de trabalho	0,7 MPa		
Pressão mínima de trabalho	0,15 MPa **		
Temperatura ambiente e do fluido	Sem sensor magnético: -10°C a 70°C, Com sensor magnético: -10°C a 60°C *		
Amortecedor	Amortecimento de borracha		
Lubrificação	Não requer (dispensa lubrificação)		
Tolerância de comprimento do curso	+1,0 0		
Velocidade do pistão	50 a 750 mm/s		
Energia cinética admissível	0,090 J		
÷ 0			

^{*} Sem congelamento ** 0,06 MPa para peças diferentes da unidade de trava.

Especificações da trava

3				
Posição de travamento	Extremidade traseira, extremidade dianteira			
Força de retenção (máx.)	98 N			
Pressão de liberação da trava	0,15 MPa ou menos			
Folga	1 mm ou menos			
Liberação manual	Tipo sem travamento			

Curso padrão

ourse paurae	(1111)
Diâmetro	Curso padrão
16	15, 30, 45, 60, 75, 100, 125, 150, 175, 200

^{*} A produção de cursos intermediários em intervalos de 1 mm é possível. (Espaçadores não são usados.)

Ref. do suporte de montagem

non de caperte de memagem					
Suporte de	Diâmetro (mm)				
montagem	16				
Suporte tipo pé	CJ-L016B				
Suporte do flange	CJ-F016B				
Suporte em T *	CJ-T016B				

^{*} O suporte em T é usado com fixação oscilante traseira fêmea (D).

Consulte as páginas 138 a 144 para obter informações sobre cilindros com sensores magnéticos.

- Curso mínimo para montagem do sensor magnético
- Posição adequada da montagem do sensor magnético (detecção no fim do curso) e altura de montagem
- Intervalo de operação
- Referência do suporte de montagem do sensor

CJ1

CJP

CJ2

CM2 -Z

CM2

CG1

CG1

CG3

MB -Z

MB1

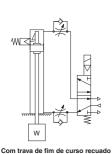
CA2

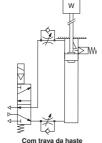
CA2

CS1

D-□ -X□

Technical data


Série CBJ2 Precauções específicas do produto


Leia antes do manuseio. Consulte a SMC sobre produtos fora dessas especificações.

Use o circuito recomendado de pressão de ar.

∕.\ Cuidado

• É necessário para o travamento e destravamento adequado.

Com nava ua

Seleção

. Cuidado

1. Não use a válvula solenoide de 3 posições.

Evite usar este cilindro em combinação com uma válvula solenoide de 3 posições (especialmente o tipo de vedação metálica com centro fechado). Se a pressão de ar ficar vedada dentro da porta no lado que contém o mecanismo de travamento, a trava não engatará. Mesmo que a trava engate no início, o ar que vaza da válvula solenoide poderia entrar no cilindro e fazer com que a trava desengatasse com a passagem do tempo.

2. Retorne a pressão se necessário para destravar.

Antes de iniciar, certifique-se de que é fornecido ar no lado que não é equipado com um mecanismo de trava, conforme mostrado no diagrama acima. Caso contrário, a trava poderá não desengatar.

(Consulte "Desengate da trava".)

3. Desengate a trava antes de instalar ou ajustar o cilindro.

A trava poderia ser danificada se o cilindro fosse instalado quando sua trava está engatada.

4. Opere o cilindro com um índice de carga de 50% ou menos.

A trava pode não desengatar ou poderá ser danificada se o índice de carga de 50% for excedido.

5. Não sincronize vários cilindros.

Não opere dois ou mais cilindros com trava sincronizados para mover uma peça de trabalho simples, porque uma das travas do cilindro pode ser desengatada quando necessário.

 Opere a válvula reguladora de vazão sob controle de regulagem do ar de saída.

Se operada sob controle o meter-in, a trava poderá não desengatar.

 Nesse lado que possui a trava, certifique-se de operar no fim do curso do cilindro.

A trava pode não engatar ou desengatar se o pistão do cilindro não atingir o fim do curso.

8. O ajuste de posição do sensor magnético deve ser executado nas duas posições; uma posição determinada pelo curso e uma posição após o movimento da folga (em 1 mm).

Quando um sensor de indicador de 2 cores for ajustado para mostrar verde no fim do curso, o indicador poderá ficar vermelho quando o cilindro retornar após o movimento da folga. No entanto, isso não indica um erro.

Pressão de trabalho

∧ Cuidado

Fomeça uma pressão de ar de 0,15 MPa ou mais à porta no lado que tem o mecanismo de trava, conforme o necessário para desativar a trava.

Velocidade do ar de escape

∧ Cuidado

A trava engatará automaticamente se a pressão de ar na porta no lado que possui o mecanismo de trava ficar em 0,05 MPa ou menos. Lembre-se de que se a tubulação no lado que possui o mecanismo da trava ficar estreita ou longa, ou se a válvula reguladora de vazão estiver localizada longe da porta do cilindro, a velocidade de escape de ar poderá ficar mais lenta, envolvendo um tempo maior para a trava engatar. Um resultado similar ocorrerá se o silenciador instalado na porta de escape da válvula solenoide ficar entupido.

Desengate da trava

Para desengatar a trava, certifique-se de fornecer pressão de ar à porta no lado sem um mecanismo de trava, evitando assim que seja aplicada carga ao mecanismo de trava. (Consulte o circuito de pressão de ar recomendado.) Se a trava for desengatada quando a porta no lado que não contém um mecanismo de trava estiver no estado de escape e estiver sendo aplicada carga ao mecanismo de trava, uma força indevida será aplicada ao mecanismo de trava, podendo danificá-lo. Além disso, isso poderá ser extremamente perigoso, pois a haste do pistão poderá se mover repentinamente.

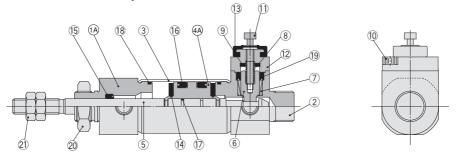
Desengate manual

∆ Cuidado

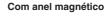
Liberação manual do modelo sem travamento

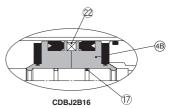
Insira o parafuso, que é fornecido como uma peça acessória, pela tampa de borracha (não é necessário remover a tampa de borracha). Aperte o parafuso no pistão da trava e remova o parafuso para desengatar a trava. Soltar o parafuso irá engatar novamente a trava.

O lado do parafuso, a força de remoção e o curso são listados abaixo.


Diâmetro (mm)	Tamanho da rosca	Força de remoção N	Curso (mm)	
16	M2,5 x 0,45 x 25L ou mais	4,9	2	

O parafuso deve ficar desacoplado sob operação normal, caso contrário, poderá causar mau funcionamento da função de travamento.




Construção (Não é possível desmontar)

Travamento do lado do cabeçote

Travamento do lado da haste

Lista de peças

Nº	Description	Material	Nota
1A	Cabeçote dianteiro	Liga de alumínio	Anodizado
1B	Cabeçote dianteiro	Aço inoxidável	
2	Cabeçote traseiro	Liga de alumínio	Anodizado
3	Tubo do cilindro	Aço inoxidável	
4A	Pistão	Liga de alumínio	Cromado trivalente
4B	Pistão B	Liga de alumínio	Cromado trivalente
5	Haste do pistão	Aço-carbono	Tratamento por calor, revestido com cromo duro
6	Pistão de travamento	Aço-carbono	Tratamento por calor, revestido com cromo duro
7	Bucha de travamento	Bronze fósforo de corte rápido	
8	Mola da trava	Aço	Zinco cromado trivalente
9	Amortecedor	Uretano	
10	Parafuso sextavado interno	Aço-liga	Zinco cromado trivalente
11	Parafuso sextavado interno	Aço-liga	Zinco cromado trivalente

Nº	Descrição	Material	Nota
12	Tampa	Liga de alumínio	Tinta preta
13	Tampa de borracha	Borracha sintética	
14	Amortecedor	Uretano	
15	Vedação da haste	NBR	
16	Vedação do pistão	NBR	
17	Gaxeta da camisa	NBR	CDBJ2: 2 peças
18	Gaxeta da camisa	NBR	
19	Vedação do pistão de travamento	NBR	
20	Porca de montagem	Latão	Revestimento de níquel
21	Porca da haste	Aço laminado	Zinco cromado trivalente
22	Anel magnético	_	CDBJ2
22	Anel magnético	_	CDBJ2

CJ1 CJP

CJ2 -Z

CJ2 CM2 -Z

CM2

CM3 CG1 -Z

CG1

CG3 MB -Z

MB

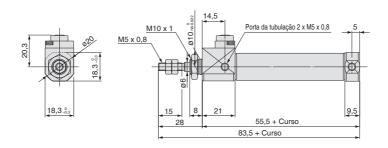
MB1 CA2 -Z

CA2

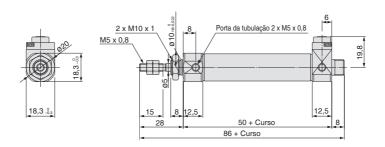
CS1

D-□ -X□

Technical data

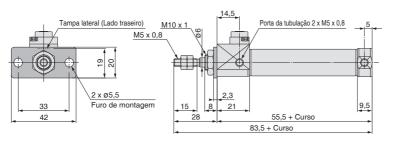


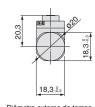
Série CBJ2


Dimensões

Modelo básico

Com trava da hast: C□BJ2B16-___--RN



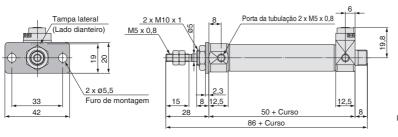


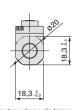
Dimensões

Modelo de flange

CJ1 CJP

CJ2 CM2


CM2


СМЗ

CG1
CG3
MB
-Z
MB
MB1
CA2

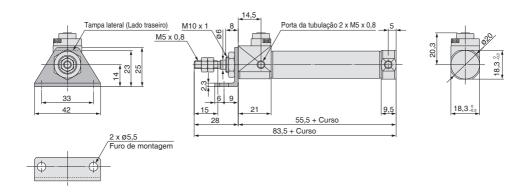
CA2 CS1 CS2

Diâmetro externo da tampa

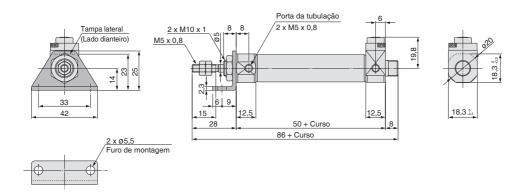
Diâmetro externo da tampa

D-□ -X□

Technical data

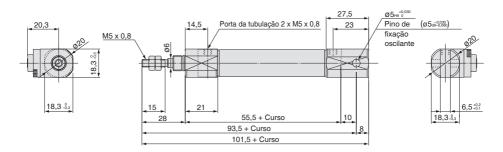


Série CBJ2


Dimensões

Modelo pé axial

Com trava da haste: C□BJ2L16- -RN



Dimensões

Modelo de fixação oscilante traseira fêmea Com trava da haste: C□BJ2D16-□□-RN

CJ1

CJP

CJ2

CM2 -Z

CM2 CM3

CG1 -Z

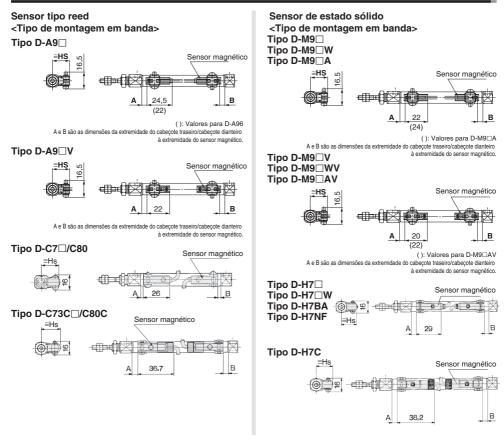
CG1

CG3 MB -Z

MB

MB1 CA2 -Z

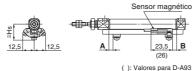
CA2

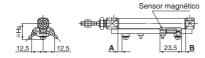

CS1

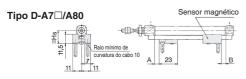
Technical data

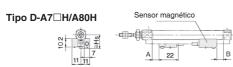
Série CJ2

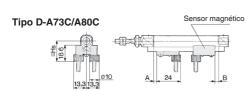
Montagem do sensor magnético

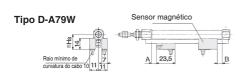

Posição adequada da montagem do sensor magnético (detecção no fim de curso) e altura de montagem

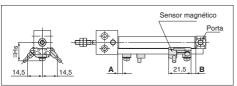

Montagem do sensor magnético Série CJ2

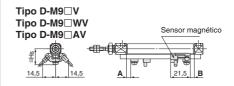

Posição adequada da montagem do sensor magnético (detecção no fim de curso) e altura de montagem

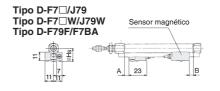

<Tipo de montagem em trilho> Tipo D-A9□

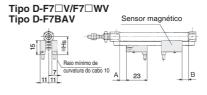


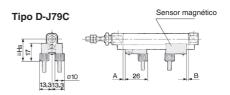

Tipo D-A9□V








Para o tipo de montagem direta, a relação entre a posição de montagem do sensor magnético e a posição da porta deve ser igual à mostrada abaixo.



<Tipo de montagem em trilho> Tipo D-M9□ Tipo D-M9□W Tipo D-M9□A Sensor magnético

CJ1

CJ2 -Z CJ2

CM2 -Z

CM3 CG1 -Z

CG1

MB -Z

MB1 CA2 -Z

CA2

CS₂

D-□

-X□

Technical

Posição adequada da montagem do sensor magnético (detecção no fim de curso) e altura de montagem

Posição adequada de montagem do sensor magnético (tipo de simples ação excluído) (mm)									
Modelo do				Montagem	em banda				
sensor magnético	D-M9		D-A9□ D-A9□V		D-C7□ D-C80 D-C73C D-C80C		D-H7□ D-H7C D-H7NF D-H7□W D-H7BA		
Diâmetro	Α	В	Α	В	Α	В	Α	В	
6	5,5[4,5] (12)	5,5[4,5] (4)	1,5[0,5] (8)	1,5[0,5] (0)	2 (8,5)	2 (0,5)	1 (7,5)	1 (0)	
10	6[5]	5[5]	2[1]	2[1]	2,5	2,5	1,5	1,5	
16	6,5[5,5]	6,5[5,5]	2,5[1,5]	2,5[1,5]	3	3	2	2	

												(mm)
Modelo do		Montagem em trilho										
sensor magnético	D-M9 D-M9 D-M9 D-M9 D-M9	□V □W □WV □A	D-A D-A		D-A		D-A7 H D-A73C/ D-F7 J D-F7 W D-F7 V D-F79F D-J79C D-F7BA D-F7BA	A80C 79 //J79W /F7□WV	D-F7	'NT	D-A	79W
Diâmetro	Α	В	Α	В	Α	В	Α	В	Α	В	Α	В
6	_	_	_	_	_	_	_	_	_	_	_	_
10	4,5	4,5	0,5	0,5	3	3	3,5	3,5	8,5	8,5	0,5	0,5
16	5	5	1	1	3,5	3,5	4	4	9	9	1	1

Os valores em () são medidos a partir da extremidade do suporte de montagem do sensor magnético.
As figuras entre parfeteses para o diâmetro o6 destinam-se ao tipo de haste passante (Série CJZW).
Na configuração atual, ajuste-os após confirmar o desempenho do sensor magnético.

Altura	de mo	ntanam	do	eanear	magnético
Allura	ae ma	madem	uo.	sensor	maonenco

l	ľ	I	1	Į	ı	1
i						

Modelo do	Montagem em banda							
sensor magnético		D-M9□V D-M9□WV D-M9□AV D-A9□V	D-H7□/H7□W D-H7NF D-H7BA D-C7□/C80	D-C73C D-C80C	D-H7C	D-A7□ D-A80		
Diâmetro	Hs	Hs	Hs	Hs	Hs	Hs		
6	15	16	15	17,5	18	_		
10	17	18	17	19,5	20	16,5		
16	20,5	21	20,5	23	23,5	19,5		

1	1	٧	٦	r	١	•
١	۰		ŀ	۰	ľ	

Modelo do	Montagem em trilho								
sensor magnético	D-M9 U D-M9 U D-M9 W D-M9 W D-M9 A D-M9 A D-M9 A D-A9 V	D-F7□/J79 D-F7□W/J79W D-F7BA/F79F D-F7NT D-A7□H/A80H	D-A73C D-A80C	D-F7□V D-F7□WV D-F7BAV	D-J79C	D-A79W			
Diâmetro	Hs	Hs	Hs	Hs	Hs	Hs			
6	_	_	_	_	_	_			
10	17,5	17,5	23,5	20	23	19			
16	21	20,5	26,5	23	26	22			

Montagem do sensor magnético Série CJ2

Posição adequada de montagem do sensor magnético (Detecção no fim do curso) e Simples ação de altura de montagem, Tipo de retorno por mola

Posição adequada de montagem do sensor magnético; Retorno por mola

• Tipo padrão (CDJ2□□-□S)

• Tipo de haste não rotativa (CDJ2K□□□-□S)

• Tipo de montagem direta (CDJ2R□□□-□S)

• Haste não rotativa/Tipo de montagem direta (CD.I2RK□□□-□S)

• Ի	Haste não rotativa/Tipo de montagem direta (CDJ2RK□□□-□S)											C
	Modelo do sensor magnético	Diâmetro	Curso de 10 a 15	Curso de 16 a 30	Curso de 31 a 45	Dimensõ Curso de 46 a 60		Curso de 76 a 100	Curso de 101 a 125	Curso de 126 a 150	В	C
		6	8	17	21	35	_	_	_	_	1,5	U
	D-A9□	10	8,5	16	28	40	_	_	_	_	2	CJ
nda		16	8	16,5	28,5	40,5	46,5	70,5	88,5	100,5	2,5	-Z
		6	12	21	25	39	_	_	_	_	5,5	C.
bal	D-M9□ D-M9□W	10	12,5	20	32	44	_	_	_	_	6	
em	D-INIƏ VV	16	12	20,5	32,5	44,5	50,5	74,5	92,5	104,5	6,5	CIV
Montagem em banda	D-C7□/C80	6	8,5	17,5	21,5	35,5	_	_	_	_	2	-Z
ıtag	D-C73C	10	9	16,5	28,5	40,5	_	_	_	_	2,5	CI
Mor	D-C80C	16	8,5	17	29	41	47	71	89	101	3	U.
_	D-H7□/H7C	6	7,5	16,5	20,5	34,5	_	_	_	_	1	CI
	D-H7□W/H7BA	10	8	15,5	27,5	39,5	_	_	_	_	1,5	
	D-H7NF	16	7,5	16	28	40	46	70	88	100	2	CC
	D-A9□	10	7	14,5	26,5	38,5	_	_	_	_	0,5	-Z
	D-A9□V	16	6,5	15	27	39	45	69	87	99	1	C
	D-M9□/M9□V D-M9□W/M9□WV	10	11	18,5	30,5	42,5	_	_	_	_	4,5	H
0	D-M9□A/M9□AV	16	10,5	19	31	43	49	73	91	103	5	C
Ę	D-A7□/A80	10	9,5	17	29	41	_	_	_	_	3	M
m.	D-A1=/A00	16	9	17,5	29,5	41,5	47,5	71,5	89,5	101,5	3,5	-Z
Montager	D-A7□H/A80H D-A73C/A80C D-F7□/J79 D-F7□W/J79W	10	10	17,5	29,5	41,5	_	_	_	_	3,5	M
	D-F7□V/F7□WV D-F79F/J79C D-F7BA D-F7BAV	16	9,5	18	30	42	48	72	90	102	4	CA -Z
		10	15	22,5	34,5	46,5	_	_	_	_	8,5	C
	D-F7NT	16	14,5	23	35	47	53	77	95	107	9	H
	D 47014	10	7	14,5	26,5	38,5	_	_	_	_	0,5	C
	D-A79W	16	6.5	15	27	39	45	69	87	99	1	\vdash

CJ1

CJP ;J2

J2 M2 CM2

CM3 G1

CG1 CG3

> ЛB ИB

VIB1 A2

CA2 CS1

CS₂

Technical

^{*} Na configuração atual, ajuste-os após confirmar o desempenho do sensor magnético.

Série CJ2

Posição adequada da montagem do sensor magnético (detecção no fim de curso) e altura de montage Simples ação, Tipo de avanço por mola (T)

Posição adequada de montagem do sensor magnético: Tipo de avanço por mola (T)

• Tipo padrão (CDJ2□□-□T)

• Tipo de hastè antigiro (CDJ2K□□□-□T)

• Tipo de montagem direta (CDJ2R□□□-□T)

Haste antigiro/Tipo de montagem direta (CDJ2RK□□□-□T)

(mm)

	Modelo do sensor	Diâmetro	Α			D	imensões de B				
	magnético	Diametro	_ ^	Curso de 10 a 15	Curso de 16 a 30	Curso de 31 a 45	Curso de 46 a 60	Curso de 61 a 75	Curso de 76 a 100	Curso de 101 a 125	Curso de 126 a 150
		6	1,5	8	17	21	35	_	_	_	_
	D-A9□	10	2	8,5	16	28	40	_	_	_	_
_		16	2,5	8	16,5	28,5	40,5	46,5	69,5	88,5	100,5
em banda	D 110	6	5,5	12	21	25	39	_	_	_	_
ba	D-M9□ D-M9□W	10	6	12,5	20	32	44	_	_	_	_
	D 1110=11	16	6,5	12	20,5	32,5	44,5	50,5	73,5	92,5	104,5
em	D-C7□/C80	6	2	8,5	17,5	21,5	35,5	_	_	_	_
Jtag	D-C73C	10	2,5	9	16,5	28,5	40,5	_	_	_	_
Montagem	D-C80C	16	3	8,5	17	29	41	47	71	89	101
_	D-H7□/H7C	6	1	7,5	16,5	20,5	34,5	_	_	_	_
	D-H7□W/H7BA	10	1,5	8	15,5	27,5	39,5	_	_	_	_
	D-H7NF	16	2	7,5	16	28	40	46	70	88	100
	D-A9□ D-A9□V	10	0,5	7	14,5	16,5	38,5	_	_	_	_
		16	1	6,5	15	27	39	45	68	87	99
	D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	10	4,5	11	18,5	30,5	42,5	_	_	_	_
0		16	5	10,5	19	31	43	49	72	91	103
를	D-A7□/A80	10	3	9,5	17	29	41	_	_	_	_
em trilho	D-A1=/A00	16	3,5	9	17,5	29,5	41,5	47,5	71,5	87,5	101,5
Montagem e	D-A7□H/A80H D-A73C/A80C D-F7□/J79 D-F7□W/J79W	10	3,5	10	17,5	29,5	41,5	_	_	_	_
~	D-F7□V/F7□WV D-F79F/J79C D-F7BA D-F7BAV	16	4	9,5	18	30	42	48	72	90	102
	D-F7NT	10	8,5	15	22,5	34,5	46,5	_	_	_	_
	D-F/NI	16	9	14,5	23	35	47	53	77	95	107
	D-A79W	10	0,5	7	14,5	26,5	38,5	_	_	_	_
	D-A/SW	16	1	6,5	15	27	39	45	69	87	99

^{*} Na configuração atual, ajuste-os após confirmar o desempenho do sensor magnético.

Montagem do sensor magnético Série CJ2

Curso mínimo para montagem do sensor magnético

			Número de	sensores magnéticos	s montados	(mm)
Montagem do	Modelo do sensor	4	2 p	cs.	n peças (n: Número de	sensores magnéticos)
sensor magnético	magnético	1 pç.	Superfícies diferentes	Mesma superfície	Superfícies diferentes	Mesma superfície
	D-M9□/M9□W D-M9□A D-A9□	10	15 Nota 1)	45 Nota 1)	15 + 35 (n-2) (n = 2, 4, 6···) Nota 3)	45 + 15 (n-2) (n = 2, 3, 4, 5···)
	D-M9□V	5	15 Nota 1)	35	15 + 35 (n-2) (n = 2, 4, 6···) Nota 3)	35 + 25 (n-2) (n = 2, 3, 4, 5···)
	D-M9□WV D-M9□AV	10	15 Nota 1)	35	15 + 35 (n-2) (n = 2, 4, 6···) Nota 3)	35 + 25 (n-2) (n = 2, 3, 4, 5···)
Montagem em banda	D-A9□V	5	10	35	10 + 35 (n-2) (n = 2, 4, 6···) Nota 3)	35 + 25 (n-2) (n = 2, 3, 4, 5···)
	D-C7□ D-C80	10	15	50	15 + 40 (n-2) (n = 2, 4, 6···) Nota 3)	50 + 20 (n-2) (n = 2, 3, 4, 5···)
	D-H7□/H7□W D-H7BA D-H7NF	10	15	60	15 + 45 (n-2) (n = 2, 4, 6···) Nota 3)	60 + 22,5 (n-2) (n = 2, 3, 4, 5···)
	D-C73C D-C80C D-H7C	10	15	65	15 + 50 (n-2) (n = 2, 4, 6···) Nota 3)	50 + 27,5 (n-2) (n = 2, 3, 4, 5···)
	D-M9□V	5	_	5	_	10 + 10 (n-2) (n = 4, 6···) Nota 4)
	D-A9□V	5	_	10	-	10 + 15 (n-2) (n = 4, 6···) Nota 4)
	D-M9□ D-A9□	10(5)	_	10	_	15 + 15 (n-2) (n = 4, 6···) Nota 4)
	D-M9□WV D-M9□AV	10	-	15	_	15 + 15 (n-2) (n = 4, 6···) Nota 4)
	D-M9□W	15(10)	_	15	_	20 + 15 (n-2) (n = 4, 6···) Nota 4)
	D-M9□A	15(10)	_	20(15)	_	20 + 15 (n-2) (n = 4, 6···) Nota 4)
Montagem em trilho	D-A7□/A80 D-A7□H/A80H D-A73C/A80C	5	_	10	_	15 + 10 (n-2) (n = 4, 6···) Nota 4)
	D-A7□H D-A80H	5	_	10	_	15 + 15 (n-2) (n = 4, 6···) Nota 4)
	D-A79W	10	_	15	-	10 + 15 (n-2) (n = 4, 6···) Nota 4)
	D-F7□ D-J79	5	_	5	_	15 + 15 (n-2) (n = 4, 6···) Nota 4)
	D-F7□V D-J79C	5	_	5	-	10 + 10 (n-2) (n = 4, 6···) Nota 4)
	D-F7□W/J79W D-F7BA/F79F D-F7NT	10	_	15	_	15 + 20 (n-2) (n = 4, 6···) Nota 4)
	D-F7□WV D-F7BAV	10	_	15	_	10 + 15 (n-2) (n = 4, 6···) Nota 4)

Nota 3) Quando "n" for um número ímpar, um número par acima deve ser usado para o cálculo. Nota 4) Quando "n" for um número ímpar, um número par acima deve ser usado para o cálculo. No entanto, o número par mínimo é 4. Portanto, 4 é usado para o cálculo quando "n" for 1 a 3.

Nota 1) Montagem do sensor magnético Com 2 sensores magnéticos Superfícies diferentes Nota 1) Mesma superfície Nota 1) Modelo do sensor magnético magnético A posição de montagem do sensor magnético adequada é 5,5 O sensor magnético é montado deslocando-o levemente em uma mm para frente da borda do suporte do sensor. direção (circunferência do tubo do cilindro externo) para que o A e B acima indicam valores para montagem por abraçadeira sensor magnético e o cabo não interfiram um com o outro. na tabela da página 53. D-M9□/M9□W/M9□A Curso menor que 20 Nota 2) Curso menor que 55 Nota 2) Curso menor que 50 Nota 2) D-A90/A93

Nota 2) Curso mínimo para montagem de sensores magnéticos em modelos diferentes dos mencionados na Nota 1.

D-□

Technical

CJ1

CJ₂ CM2

CM2

СМЗ CG1

CG₁

CG3 MB

MB

MB1 CA2

CA2 CS₁

CS₂

Intervalo de operação

				(mm)
	Modelo do sensor magnético		iâmetr	о.
IV.	nodelo do sensor magnetico	6	10	16
banda	D-A9□	4,5	6	7
em bar	D-M9□ D-M9□W	2	2,5	3
E	D-C7□/C80/C73C/C80C	6	7	7
Montagem	D-H7□/H7□W D-H7BA/H7NF	3	4	4
Σ	D-H7C	5	8	9
	D-A9□/A9□V	_	6	6,5
trilho	D-M9□/M9□V D-M9□W/M9□WV D-M9□A/M9□AV	_	3	3,5
Montagem em	D-A7□/A80/A7H/A80H D-A73C/A80C	_	8	9
ntag	D-A79W	_	11	13
Mor	D-F7□/J79/F7□W/J79W D-F7□V/F7□WV/F79F D-J79C/F7BA/F7BAV D-F7NT	_	5	5

* Valores apenas para referência incluindo histerese, não significa que sejam garantidos. (Supondo aproximadamente ±30% de dispersão.) Pode variar muito de acordo com o caso e o ambiente.

Referência

Os suportes de montagem do sensor magnético que usam parafusos de aço inoxidável estão disponíveis para o cilindro de aço inoxidável CJ5

Suportes de montagem do sensor magnético para CJ5: Referência

Diâmetro(mm)	Referência do suporte de montagem do sensor magnético	Nota		
10	BJ2-010S	Parafuso de montagem		
16	BJ2-016S	de aço inoxidável		

Suporte de montagem do sensor magnético: Referência

Montagem do sensor	Modelo do sensor		Diâmetro (mm)				
magnético	magnético	ø6	ø 10	ø16			
	D-M9□/M9□V D-M9□W/M9□WV D-A9□/A9□V	Nota 1) BJ6-006	Nota 2) BJ6-010	Nota 2) BJ6-016			
	D-M9□A D-M9□AV	Nota 3) BJ6-006S	Nota 4) BJ6-010S	Nota 4) BJ6-016S			
Montagem em banda	d	### (Paraluso de montagem do sensor magnético) BJ2-□□□: Um conjunto de a e b acima					
	D-C7□/C80 D-C73C/C80C D-H7□/H7□W D-H7BA/H7NF	BJ2-006	BJ2-010	BJ2-016			
	D-A9□		Nota 3), Nota 4) BQ2-012, BQ2-012S	Nota 3), Nota 4) BQ2-012, BQ2-012S			
Montagem em trilho	D-A9 V D-M9 V D-M9 W D-M9 WV D-M9 WV D-M9 A Nota 4) D-M9 AV Nota 4)	_	BQ2-012 BQ2-012S				

Nota 1) Defina a referência que inclui a banda de montagem do sensor magnético (BJ2-006) e o kit retentor

| Defina a referencia que inclui a banda de montageni do sensor magneto (b22-c00) e o kir terino (B35-2/Suporte do sensor: Transparente).

Nota 2) Defina a referência que inclui a banda de montagem do sensor magnético (B32-c□□) e o kit retentor (B35-1/Suporte do sensor: Transparente).

Nota 3) Defina a referência que inclui a banda de montagem do sensor magnético (BJ2-006S) e o kit retentor (BJ4-2/Suporte do sensor: Preto).

Nota 4) Defina a referência que inclui a banda de montagem do sensor magnético (BJ2-□□□S) e o kit de suporte

Nota 4) Defina a referencia que inclui a banda de montagem do sensor magnetico (BJ2-LILILIS) e o kit de suporte (BJ4-TiSuporte do sensor: Branco).

Nota 5) Apenas suportes de montagem do sensor magnético são montados quando os cilindros são fornecidos.

Nota 6) Quando um sensor magnético compacto é montado em um trilho ø10 ou ø16, um suporte de sensor magnético é necessário, e deve ser pedido separadamente. Exemplo de pedido CDJ2B10-60-A ··

CDJ2810-bt-A·········]

D-M9BWV ············ 2 peças
B02-012 ······-2 peças
Nota 7) Para D-M9□A(V)L, solicite B02-012S, que usa parafusos de montagem de aço inoxidável.
Nota 8) Para o sensor magnético tipo D-M9□A (V), não instale o suporte do sensor no led indicador.

[Kit de parafuso de montagem de aço inoxidável]

O seguinte conjunto de parafusos de montagem feitos de aço inoxidável está disponível. Utilize de acordo com o ambiente de trabalho. (Como os suportes do sensor magnético não estão incluídos, solicite-os separadamente.)
BBA4: Para tipos D-C7/C8/H7

Nota 9) Consulte a página 1656 para obter os detalhes dos parafusos BBA4.

Os parafusos de aço inoxidável acima são usados quando um cilindro é enviado com os sensores magnéticos do tipo D-H7BA

Quando apenas um sensor magnético é enviado independentemente, os parafusos BBA4 são fixados.

Além disso, para os sensores magnéticos listados acima, os seguintes sensores magnéticos também estão disponíveis. Consulte as páginas 1559 a 1673 para obter as especificações detalhadas.

Sensor magnético	Montagem	Referência	Entrada elétrica (Direção da entrada)	Recursos	Diâmetro aplicável	
	Montagem	D-H7A1, H7A2, H7B		_	ø6 a ø16	
	em banda	D-H7NW, H7PW, H7BW		Indicação de diagnóstico (indicador de 2 cores)	00 8 0 10	
		D-H7BA	Grommet	Resistente à água (indicador de 2 cores)		
		D-F79, F7P, J79	(em linha)	_		
Estado sólido		D-F79W, F7PW, J79W		Indicação de diagnóstico (indicador de 2 cores)		
	Montagem	D-F7BA		Resistente à água (indicador de 2 cores)	ø10, ø16	
	em trilho	D-F7NV, F7PV, F7BV	Grommet	_		
		D-F7NWV, F7BWV	(perpendicular)	Indicação de diagnóstico (indicador de 2 cores)		
		D-F7BAV	(perpendicular)	Resistente à água (indicador de 2 cores)		
	Montagem	D-C73, C76		_	-010	
	em banda	D-C80	Grommet	Sem LED	ø6 a ø16	
Reed		D-A73H, A76H	(em linha)	_		
нееа	Montagem	D-A80H]	Sem LED	40 40	
	em trilho	D-A73	Grommet	_	ø10, ø16	
		D-A80	(perpendicular)	Sem LED		

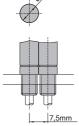
Sensores de estado sólido também estão disponíveis com um conector pré-cabeado. Consulte as páginas 1626 e 1627 para obter detalhes. * Sensores de estado sólido normalmente fechados (N.F. = contato b) (tipos D-F9G/F9H) também estão disponíveis. Consulte a página 1577 para obter detalhes.

Série CJ2

Produzido sob encomenda: Especificações individuais

Entre em contato com a SMC para obter informações detalhadas sobre dimensões, especificações e prazos de entrega.

1 Espaçamento curto de montagem/Simples ação Retorno por mola


Símbolo -X773

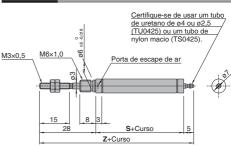
CJ2B6 - Curso SU4 - X773

Espaçamento curto de montagem

O espaçamento de montagem é reduzido quando os cilindros são usados

- ■Muda as dimensões do cabecote dianteiro e do cabecote traseiro para ø7.
- ■Reduz o comprimento total com um cabeçote traseiro integrado com uma conexão espigão.

parafusos de montagem do cilindro


Exemplo de aplicação

Verificação da acionamento do botão para celulares, etc.

Especificações

Diâmetro (mm)	6
Ação	Simples ação, retorno por mola
Range de pressão de trabalho	0,2 a 0,7 MPa
Conexão	Com conexão espigão ø4 (para tubo macio)
Localização da porta de conexão	Cabeçote traseiro/Direção axial
Curso (mm)	5 a 60
Sensor magnético	Nenhuma

Dimensões

				(mm)
Curso	5 a 15	16 a 30	31 a 45	46 a 60
S	30,5	39,5	43,5	57,5
Z	63,5	72,5	76,5	90,5

- 1. Ao montar um cilindro, certifique-se de que a porta de escape de ar no cabeçote dianteiro não esteja bloqueada.
- 2. Ao montar um cilindro, aplique adesivo de travamento de rosca na peça roscada e segure o diâmetro externo do cabeçote dianteiro com um alicate de ponta fina ou alicate regular.

D--X□

Technical

145

CG₁ CG3

CJ₁

CJP

CJ₂

CM2

CM2 СМЗ CG1

MB -Z

MB MB1

CA2

CA2 CS₁

CS₂