Válvula de baixo respiro

Série XVD

- A construção integrada da válvula/válvula da agulha requer somente 1/4 do espaço de tubulação dos modelos anteriores.
- Os particulados são reduzidos significativamente através do uso de um diafragma de metal na porção da folha
- A vazão da alimentação de ar inicial e da alimentação de ar principal pode ser ajustada.

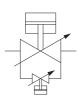
Modelo	Tipo de válvula	Tamanho da tubulação	Orifício (mmø)	Área efetiva (mm²)	Pressão de trabalho (Pa)	Vazamento (Pa□m³/s)			Ciclos de vida útil	
Modelo						Interna	Externa	Conexão	(10 mil)	D()
XVD2-02V				Alimentação de ar	0,2 MPa (G) a 1 x 10-6	5 x 10 ⁻⁹	1,3 x 10 ⁻¹¹	Para VCR® 1,3 x 10-11	50	Páginas 1207
XVD2-02S ação (N.F.)	1/4	3	Alimentação de ar inicial: 0,2 a 4,6		Os valores estão em temperatura normal, excluindo a permeabilidade por gás		Para Swagelok® 1,3 x 10-10	50	1210	

Válvula de baixo respiro (Linha de fornecimento)

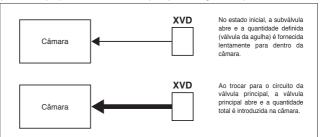
Série XVD

XL□

XL_Q XM_ XY_


D-XVD XGT

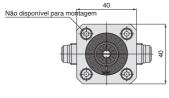
CYV

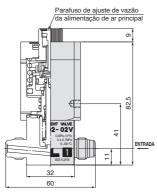


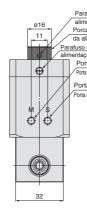
- Economia de espaço Tam A construção integrada da válvula/válvula da agulha requer somente 1/4 do espaço da tubulação dos modelos anteriores.
- Os particulados são reduzidos significativamente pelo uso de um diafragma de metal na porção da folha
- A vazão da alimentação de ar inicial e da alimentação de ar principal pode ser ajustada.

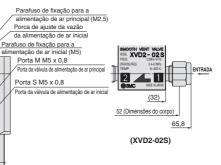
Aplicação

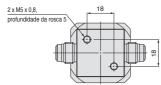
Introduzir toda a quantidade de pressão de alimentação ($Ar limpo/N_2$) ao mesmo tempo ao retornar a câmara de vácuo à atmosfera fará com que os particulados entrem na câmara. Para evitar isso, após introduzir lentamente a alimentação de ar inicial e definir a pressão, troque para o circuito da válvula principal e forneça toda a quantidade.

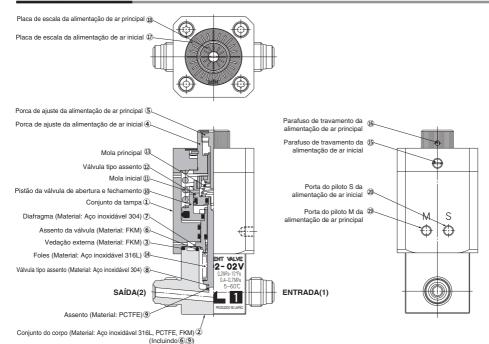

1207


Série XVD


Especificações


Modelo		XVD2-02V	XVD2-02S		
Tipo de válvula		Normalmente fechada (Pressurize para abrir, vedação da mola)			
Fluido		Nitrogênio, Ar, Gás inerte, etc.			
Temperatura de trabalho ((°C)	5 a 60 °C (Temperatura de cozimento de 150 °C ou inferior)			
Pressão de trabalho (Pa)		0,2 MPa (G) a 1 x 10 ⁻⁶ (abs)			
Diâmetro do orifício (mm)		ø3			
Área efetiva (mm²)	Alimentação de ar principal	4,6			
Area eletiva (IIIIII)	Alimentação de ar inicial	0,2 a 4,6			
	Interna	5 x 10 ⁻⁹	Em temperatura normal, excluindo a permeabilidade por gás.		
Vazamento (Pa□m³/s)	Externa	1,3 x 10 ⁻¹¹	Em temperatura normal, excluindo a permeabilidade por gás.		
	Conexão	1,3 x 10 ⁻¹¹	1,3 x 10 ⁻¹⁰		
Tipo de conexão da tubula	ação	Para VCR®	Para Swagelok®		
Tamanho da conexão		1/4			
Materiais principais		Corpo: aço inoxidável 316L, Peça principal: aço inoxidável 316L, aço inoxidável 304, FKM (Material de vedação)			
Tratamento de superfície	interno	Tratamento de EP do corpo			
Pressão de trabalho (MPa)	0,4 a 0,7 (Válvulas de alimentação principal e inicial)			
Conexão do piloto		M5 x 0,8			
Peso (kg)		0,5			


Dimensões



Construção/operação

<Ajuste da vazão da alimentação de ar inicial> Série XVD

Use uma chave de fenda de cabeça plana para girar gentilmente o parafuso de travamento da alimentação de ar inicial (\$\mathbb{G}\$) para a esquerda, afrouxando-a de que ela pare. Continue girando a porca de ajuste da alimentação de ar inicial (\$\mathbb{G}\$) para a direita e a vazão de alimentação de ar inicial mínimo possível é o ponto em que a plaqueta de identificação e a marca da porca de ajuste se alinham o mais próximo de onde o torque é sentido. (Cuidado para não apertar a porca de ajuste da alimentação de ar inicial (\$\mathbb{G}\$) para além desse ponto, pois pode causar danos aos componentes.)

Após confirmar a posição da porca de ajuste da alimentação de ar inicial () e a escala de alinhamento do ângulo da placa de escala da alimentação de ar inicial () , ajuste a quantidade de alimentação de ar inicial rotações de características de vazão conforme exibido, defina a vazão da alimentação de ar inicial. Após a definição, trave-a apertando o parafuso de travamento da alimentação de ar inicial. Após a inicial () com um torque de 0,5 N-cm.

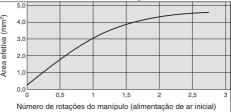
Ajuste da vazão da alimentação de ar principal

Use a chave de fenda de cabeça plana para afrouxar gentilmente o parafuso de travamento da alimentação de ar principal 🕲 e também para confirmar que a porca de ajuste da alimentação de ar principal (§) está rodando livremente. Mantenha a rotação da porca de ajuste da alimentação de ar principal (§) parar será a "quantidade de ajuste da alimentação de ar inicial". Após confirmar a posição da porca de ajuste da alimentação de ar principal (§) e a escala de alimentação de arprincipal (§) e a escala de alimentação de arprincipal objectos de a principal objectos de arprincipal objectos de ar

Fornecimento da alimentação de ar inicial

O gás que preenche a partir da lateral da porta ENTRADA (1) empurra a mola inicial III para baixo no pisitão da valvula de abertura (1) e fechamento (1) e veto o diafragma (7) e o assento da válvula (6) para parar o gás. A pressão de ar é aplicada na porta do piloto S (2). A pressão de ar é carregada na parte inferior do pistão de abertura e fechamento (1) e o pistão da válvula de abertura e fechamento (1) e o pistão da válvula de abertura e fechamento (2) para após se mover até a quantidade atribuída. O movimento do pistão da válvula de abertura e fechamento (2) faz com que o diafragma (7) seja removido do assento da válvula (6) e com que o gás flua. Quando o gás começa a fluir, ele passa pela abertura (8) entre a válvula do assento (9) (quantidade definida de alimentação de ar inicial) e flui até a porta SAIDA (2).

Fornecimento da alimentação de ar principal


Parada da alimentação de ar inicial e principal

É possível tazer com que a alimentação de ar inicial e principal parem ao mesmo tempo. A força da mola principal 🌡 a tivada pelo escape da porta do piloto S Ø faz com que o pistão da vávlula de abertura e fechamento 🗓 se mova para baixo e o diafragma Ø e o assento da válvula (§) se fechem, parando o fornecimento de gás. A força da mola inicial 🗓 ativada pelo escape da porta do piloto M 🖞 faz com que o pistão da válvula tipo assento 🗓 se mova para baixo e com que a alimentação de ar inicial reverta a sua posição previamente ajustada.

Observações 1: O fornecimento da alimentação de ar principal é realizado com a porta do piloto da alimentação de ar principal S [®] em um estado pressurizado.

Observações 2: Aumentar a quantidade de alimentação de ar inicial no mecanismo causará uma diminuição na faixa da quantidade de alimentação de ar principal.

Características de taxa de vazão e rotação

XL□

XL\(\Bar{Q}\)

D-□

XVD

CYV

Série XVD Precauções específicas do produto

Certifique-se de ler antes do manuseio.

Válvula de baixo respiro/Série XVD

Proieto

∆ Atenção

1. O material do corpo e os foles são de aço inoxidável 316L, enquanto os outros materiais que podem ser expostos a fluidos são de aço inoxidável 304 e PCTFE e o material de vedação é o FKM. Verifique o material utilizado e use somente fluidos que não interferirão no material.

Seleção

- 1. Faça o uso dentro da faixa de pressão de trabalho.
- 2. Pode ocorrer vazamento quando a pressão fornecida exceder 0,2 MPa(G). Ao ajustar a pressão no lado da alimentação com um regulador, etc., tome precauções contra o aumento de pressão para evitar o vazamento do regulador.
- 3. Não aperte a vazão da alimentação de ar além da posição de "vazão de alimentação mínima", pois isso resultará em danos aos componentes ou aumento do tempo necessário para atingir o vácuo na câmara do vácuo devido a um declínio nas capacidades de deslocamento da peça de acumulação de gás (câmara dos foles).

Montagem

∧ Cuidado

 Em ambientes de alta umidade, mantenha as válvulas empacotadas até o momento da instalação.

Tubulação

- 1. Antes da montagem, limpe a superfície de vedação com etanol, etc.
- Aperte o VCR® e o Swagelok® adequadamente, de acordo com o torque especificado e os métodos prescritos pela Swagelok.

 Referência) Para o VCR®: 1/8 de giro após apertá-lo com a mão Para o Swagelok®: 1 1/4 de giro após apertá-lo com a mão
- Fixe a válvula usando os parafusos de montagem na base do corpo (2 x M5).

Manutenção

. Cuidado

- Substitua a peça do conjunto da tampa e a peça do conjunto do corpo quando o fim de sua vida útil estiver se aproximando.
- Se houver suspeita de dano antes do fim da vida útil, realize a manutenção anteriormente.
- As peças especificadas pela SMC devem ser utilizadas como pecas de servico.

Peças de manutenção

Válvula de baixo respiro XVD

Nº da construção	Descrição	Referência				
1	Conjunto da tampa	XVD2-02A-30-1				
2	Conjunto do corpo	XVD2-02V-30-2 (Para VCR®)				
2	Conjunto do corpo	XVD2-02S-30-2 (Para Swagelok®)				
3	Vedação exterior	AS568-024V				